For each word \(\mathbf{y}\text{,}\) we compute \(H_3\transpose{\mathbf{y}}\) to find the error pattern and correct it. The parity-check matrix for \(C_{H,3}\) is
\begin{equation*}
H_3=\begin{bmatrix}
0 \amp 0 \amp 0 \amp 1 \amp 1 \amp 1 \amp 1 \\
0 \amp 1 \amp 1 \amp 0 \amp 0 \amp 1 \amp 1 \\
1 \amp 0 \amp 1 \amp 0 \amp 1 \amp 0 \amp 1 \\
\end{bmatrix}\text{.}
\end{equation*}
So we compute
\begin{equation*}
H\transpose{(1111111)}=\begin{bmatrix}0\\0\\0\end{bmatrix}
\end{equation*}
and
\begin{equation*}
H\transpose{(1110011)}=\begin{bmatrix} 0 \\ 0 \\1\end{bmatrix}\text{.}
\end{equation*}
The first result indicates no errors, so the decoded word is
\((1111111)\text{.}\) The second result matches the first column of
\(H_3\text{,}\) indicating an error in the first position. Correcting this gives the decoded word
\((0110011)\text{.}\)