For problem 3, Computed
\begin{align*}
4\cdot(1,2,3,4,5) \amp \\
+5\cdot(1,0,1,2,1) \amp \\
+(0,2,1,0,4) \amp \\
= (2,3,4,5,1)
\end{align*}
A basis of \(\Span(S)\) is \(\{(1,2,3,4,5),(1,0,1,2,1),(0,2,1,0,4)\}\) and the dimension is 3. Other bases are formed by replacing one of these vectors with a linear combination of basis vectors where the coefficient of the replaced vector is nonzero. (Basis Replacement Theorem)
For example, a generator matrix for \(\Span(S)\) is
\begin{equation*}
G=\begin{bmatrix}
1 \amp 2 \amp 3 \amp 4\amp 5\\
1 \amp 0 \amp 1 \amp 2\amp 1\\
0 \amp 2 \amp 1\amp0\amp 4\\
\end{bmatrix}
\end{equation*}
Computation of \(H\) for \(\Span(S)\text{:}\)
\begin{align*}
\begin{bmatrix}
1 \amp 2 \amp 3\amp 4 \amp 5 \\
1\amp 0 \amp 1\amp 2\amp 1 \\
0\amp 2 \amp 1\amp 0\amp4
\end{bmatrix} \amp \overset{R_2-R_1}{\longrightarrow} \amp\begin{bmatrix}
1 \amp 2 \amp 3\amp 4 \amp 5 \\
0 \amp 5 \amp 5 \amp 5\amp 3 \\
0\amp 2 \amp 1\amp 0\amp 4
\end{bmatrix}\\
\amp \overset{3R_2}{\longrightarrow} \amp\begin{bmatrix}
1 \amp 2 \amp 3\amp 4 \amp 5 \\
0 \amp 1 \amp 1 \amp 1\amp 2 \\
0\amp 2 \amp 1\amp 0\amp 4
\end{bmatrix}\\
\amp \overset{R3+5R_2}{\longrightarrow} \amp\begin{bmatrix}
1 \amp 2 \amp 3\amp 4 \amp 5 \\
0 \amp 1 \amp 1 \amp 1\amp 2 \\
0\amp 0 \amp 6\amp 5\amp 0
\end{bmatrix}\\
\amp \overset{-R3}{\longrightarrow} \amp\begin{bmatrix}
1 \amp 2 \amp 3\amp 4 \amp 5 \\
0 \amp 1 \amp 1 \amp 1\amp 2 \\
0\amp 0 \amp 1\amp 2\amp 0
\end{bmatrix}\\
\amp \overset{R2+6R_3}{\underset{R1+4R_3}{\longrightarrow}} \amp\begin{bmatrix}
1 \amp 2 \amp 0 \amp 5 \amp 5 \\
0 \amp 1 \amp 0 \amp 6\amp 2 \\
0\amp 0 \amp 1\amp 2\amp 0
\end{bmatrix}\\
\amp \overset{R1+5R_2}{\longrightarrow} \amp\begin{bmatrix}
1 \amp 0 \amp 0 \amp 0 \amp 1 \\
0 \amp 1 \amp 0 \amp 6\amp 2 \\
0\amp 0 \amp 1\amp 2\amp 0
\end{bmatrix}
\end{align*}
So
\begin{align*}
\amp x_1+x_5=0 \\
\amp x_2+6x_4+2x_5=0 \\
\amp x_3+2x_4=0
\end{align*}
and this is spanned by
\begin{gather*}
\begin{bmatrix}
0 \\ 1 \\ 5 \\ 1 \\ 0
\end{bmatrix},
\begin{bmatrix}
6 \\ 5 \\ 0 \\ 0 \\ 1
\end{bmatrix}
\end{gather*}