Skip to main content

Section Week 2

This is an outline of the topics we covered in the second week of class.

Subsection Tuesday 1/20

Coding Theorist of the Day.

Marcel J.E. Golay, 1902-1989
  • Swiss mathematician and physicist
  • Worked at Bell Labs (before Hamming & Shannon) briefly; mostly at Perkin-Elmer
  • Worked on problems in radar vessel detection, chromatography, spectroscopy, data processing
  • Invented the famous binary Golay code which generalizes the Hamming code (used in Voyager probes)

Class Materials.

In-person meeting cancelled today. Instead, three videos posted below along with the day’s activity.

Subsection Thursday 1/22

Coding Theorist of the Day.

F. Jessie MacWilliams, 1917-1990

Reminders.

Notes.

Started with problems 1-3 from Linear Algebra with Finite Fields (sorry about 3).
Definition 8. Span of vectors.
\(\Span(S)\) is the set of linear combinations of vectors in \(S\) i.e.
\begin{equation*} \left\{\sum_{i=1}^{n} a_{i} \cdot s_{i} \mid a_{i} \in \F, s_i \in S\right\} \end{equation*}
Definition 9. Linear independence.
A set \(S=\{s_1,\ldots,s_n\}\) is linearly independent if any one its vectors is not in the span of the others i.e.
\begin{equation*} \sum_{i=1}^{n} a_{i} \cdot s_{i}=0 \end{equation*}
has only the solution \(a_{1}=a_{2}=\ldots=0\)
Definition 11. Dimension.
The dimension of a vector space \(V\) is the number of vectors in any basis for \(V\)
Definition 12. Rowspace.
The rowspace of a matrix \(M\) is the span of the row vectors of \(M\)
Note 13.
In any field \(x y=0 \Rightarrow x=0 \text { or } y=0 \)
Note 14.
Over finite fields, solution sets to systems of linear equations are always finite
Note 15.
For us, vectors in \(\F^{n}\) are rows and we get expressions like
\begin{equation*} \mathbf{x}M=\mathbf{y} \end{equation*}
For problem 3, Computed
\begin{align*} 4\cdot(1,2,3,4,5) \amp \\ +5\cdot(1,0,1,2,1) \amp \\ +(0,2,1,0,4) \amp \\ = (2,3,4,5,1) \end{align*}
A basis of \(\Span(S)\) is \(\{(1,2,3,4,5),(1,0,1,2,1),(0,2,1,0,4)\}\) and the dimension is 3. Other bases are formed by replacing one of these vectors with a linear combination of basis vectors where the coefficient of the replaced vector is nonzero. (Basis Replacement Theorem)
Definition 16. Generator Matrix.
A generator matrix for a subspace \(V\) is a matrix \(G\) whose rowspace is \(V\)
For example, a generator matrix for \(\Span(S)\) is
\begin{equation*} G=\begin{bmatrix} 1 \amp 2 \amp 3 \amp 4\amp 5\\ 1 \amp 0 \amp 1 \amp 2\amp 1\\ 0 \amp 2 \amp 1\amp0\amp 4\\ \end{bmatrix} \end{equation*}
Definition 17. Parity-Check Matrix.
A parity-check matrix for a subspace \(V\leq \F^n\) is a matrix \(H\) such that \(\forall x\in V\)
\begin{equation*} H\transpose{x}=0\text{.} \end{equation*}
Equivalently \(G\transpose{H}=0\) where \(G\) is a generator matrix for \(V\)
\(H\) represents the nullspace of \(G\text{:}\) in general \(H\) is any generator matrix for the nullspace of \(V\) (the right nullspace of \(G\)).
Computation of \(H\) for \(\Span(S)\text{:}\)
\begin{align*} \begin{bmatrix} 1 \amp 2 \amp 3\amp 4 \amp 5 \\ 1\amp 0 \amp 1\amp 2\amp 1 \\ 0\amp 2 \amp 1\amp 0\amp4 \end{bmatrix} \amp \overset{R_2-R_1}{\longrightarrow} \amp\begin{bmatrix} 1 \amp 2 \amp 3\amp 4 \amp 5 \\ 0 \amp 5 \amp 5 \amp 5\amp 3 \\ 0\amp 2 \amp 1\amp 0\amp 4 \end{bmatrix}\\ \amp \overset{3R_2}{\longrightarrow} \amp\begin{bmatrix} 1 \amp 2 \amp 3\amp 4 \amp 5 \\ 0 \amp 1 \amp 1 \amp 1\amp 2 \\ 0\amp 2 \amp 1\amp 0\amp 4 \end{bmatrix}\\ \amp \overset{R3+5R_2}{\longrightarrow} \amp\begin{bmatrix} 1 \amp 2 \amp 3\amp 4 \amp 5 \\ 0 \amp 1 \amp 1 \amp 1\amp 2 \\ 0\amp 0 \amp 6\amp 5\amp 0 \end{bmatrix}\\ \amp \overset{-R3}{\longrightarrow} \amp\begin{bmatrix} 1 \amp 2 \amp 3\amp 4 \amp 5 \\ 0 \amp 1 \amp 1 \amp 1\amp 2 \\ 0\amp 0 \amp 1\amp 2\amp 0 \end{bmatrix}\\ \amp \overset{R2+6R_3}{\underset{R1+4R_3}{\longrightarrow}} \amp\begin{bmatrix} 1 \amp 2 \amp 0 \amp 5 \amp 5 \\ 0 \amp 1 \amp 0 \amp 6\amp 2 \\ 0\amp 0 \amp 1\amp 2\amp 0 \end{bmatrix}\\ \amp \overset{R1+5R_2}{\longrightarrow} \amp\begin{bmatrix} 1 \amp 0 \amp 0 \amp 0 \amp 1 \\ 0 \amp 1 \amp 0 \amp 6\amp 2 \\ 0\amp 0 \amp 1\amp 2\amp 0 \end{bmatrix} \end{align*}
We want
\begin{align*} \begin{bmatrix} 1 \amp 0 \amp 0 \amp 0 \amp 1 \\ 0 \amp 1 \amp 0 \amp 6\amp 2 \\ 0\amp 0 \amp 1\amp 2\amp 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2\\x_3\\x_4\\x_4\end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0\end{bmatrix} \end{align*}
So
\begin{align*} \amp x_1+x_5=0 \\ \amp x_2+6x_4+2x_5=0 \\ \amp x_3+2x_4=0 \end{align*}
and this is spanned by
\begin{gather*} \begin{bmatrix} 0 \\ 1 \\ 5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 5 \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{gather*}
All of this shows that
\begin{align*} H = \begin{bmatrix} 0 \amp 1 \amp 5\amp 1 \amp 0\\ 6 \amp 5 \amp 0 \amp 0 \amp 1 \end{bmatrix} \amp \end{align*}