Skip to main content

Section Week 4

This is an outline of the topics we covered in the fourth week of class.

Subsection Tuesday 2/3

Coding Theorist of the Day.

Venkatesan Guruswami, PhD MIT 2001

Reminders/Announcements.

Cosets.

\(u \in v+W\) then \(u+W=v+W\)
For example, take \(W=\langle(0,1,0)\rangle_{\F_{3}}=\{000,010,020\}\)
\begin{align*} (1,1,1)+W \amp=\{(1,1,1)+w \mid w \in W\} \\ \amp=\{111,121,101\} \end{align*}
Is \((1,2,1)+W=(1,1,1)+W\) ? Yes,
\begin{align*} (1,2,1)+W \amp = \{121+000, 121+010, 121+020\}\\ \amp = \{121, 101, 111\} \end{align*}
Work on Worksheet.
Standard array from worksheet:
\(\begin{array}{c|ccc}00000 & 10110 & 01011 & 11101 \\ 00001 & 10111 & 01010 & 11100 \\ 00010 & 10100 & 01001 & 11111 \\ 00100 & 10010 & 01111 & 11001 \\ 01000 & 11110 & 00011 & 10101 \\ 10000 & 00110 & 11011 & 01101 \\ 11000 & 01110 & 10011 & 00101 \\ 10001 & 00111 & 11010 & 01100\end{array}\)
Not unique: for example, row 7 could have 00101 as the coset leader

Explanation.

Let the coset leader in row \(i\) be \(\ell_i\) and the codeword at the top of column \(j\) be \(c_j\text{,}\) so that the entry in row \(i\) and column \(j\) of the standard array is \(\ell_{i}+c_{j}\text{.}\)
\begin{align*} d\left(\ell_{i}+c_{j}, c_{j}\right) \amp \leq d\left(\ell_{i}+c_j, c_{k}\right) \\ \wt\left(\ell_{i}\right) \amp \leq \wt\left(\ell_{i}+c_{j}-c_{k}\right) \end{align*}
Because \(\ell_{i}\) and \(\ell_{i}+c_{j}-\ell_{k}\) are in same coset a nd we chose \(\ell_i\) to be min weight.

Syndromes & Cosets.

Recall the syndrome of a received vector is \(\bs=H \transpose{\by}\)
What happens if \(\by_{1}, \by_{2}\) are in the same coset of \(C\) ? Then \(\by_{1}=\by_{2}+\bc\) and
\begin{align*} \bs_{1}\amp =H \transpose{\by_{1}}\\ \amp=H\left(\transpose{\by_{2}}+\transpose{\bc}\right)\\ \amp=H \transpose{\by_{2}}+H \transpose{\bc} \\ \amp=H \transpose{\by_{2}} +0\\ \amp=\bs_{2} \end{align*}
So we can simplify standard array:
Table 27. Syndrome Array for Worksheet Example
coset leader syndromes
00000 000
00001 001
00010 010
00100 100
01000 011
10000 110
11000 101
10001 111
\begin{equation*} \begin{aligned}&H: 3 \times 5 \\&{\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right]}\\&\by=11010 \\&s=111 \\&\text{ retum }11010-10001 \\&=01011\end{aligned} \end{equation*}

Subsection Thursday 2/5

Coding Theorist of the Day.

Madhu Sudan, PhD 1992 Berkeley

Updates.

Today.

  • \(\mathcal{A}_{q}(n, d)=\) max size of a code with parameters \((n, M, d)_{q}\) or \([n, k, d]_{q}\) (if linear)
  • \(\displaystyle \mathcal{A}_{q}(u, d) \leq \frac{q^{n}}{V_{q}(n, \lfloor (d-1) / 2 \rfloor)}\)
  • Next time: give a lower bound for \(\mathcal{A}_{q}(n, d)\) (Gilbert-Varshamov)

Perfect Codes.

Example 29. Golay Codes.
There are two Golay codes: \([23,12,7]_{2}\) and \([11,6,5]_{3}\text{.}\) See Golay’s (short) paper introducing them. The binary code was used in the Voyager missions and secure radio and has connections to the icosahedron, sporadic groups, and quadratic residues mod 23. The ternary code has applications in quantum computing error correction.
Solution to sphere-packing equality with \(n=90, k=11, d=3\) but no code exists by symmetry argument. These codes are generated by an \((r+1)\times n\)matrix
\begin{equation*} G=\begin{pmatrix} g_{0} \amp g_{1} \amp \ldots \amp g_{r} \amp 0 \amp \ldots \amp 0\\ 0 \amp g_{0} \amp g_{1} \amp \ldots \amp g_{r} \amp \ldots \amp 0 \\ \vdots \amp 0 \amp \ddots \amp \ddots \amp \ddots \amp \ddots \amp \vdots\\ 0 \amp \ldots \amp 0 \amp g_{0} \amp g_1\amp \ldots \amp g_{r} \end{pmatrix} \end{equation*}
The vectors making up the nonzero entries of the row are
\begin{equation*} (g_{0} g_{1} \ldots, g_{11})=(1101011100011) \end{equation*}
for the \([23,12,7]_2\) code and
\begin{equation*} (g_{0} g_{1} \ldots g_{5})=(201211) \end{equation*}
for the \([11,6,5]_3\) code.
Proof.

Singleton Bound and MDS Codes.

Definition 32. Maximum Distance Separable (MDS) Codes.
Codes that meet the Singleton bound are called maximum distance separable (MDS) codes.
Examples of MDS codes include \(\mathbb{F}_{q}^{n}\text{,}\) the repetition code of length \(n\text{,}\) the parity code \(\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)\) where \(x_n\) is chosen so that \(\sum_{i=0}^{n} x_{i}=0\) which is a \([n, n-1,2]_{q}\) code, and Reed-Solomon codes (Module 5 of the course).