ALGEBRA PRELIM REVIEW

LINEAR ALGEBRA

- (1) Let V be an n-dimensional K-vector space, and let $U \subset V$ be a subspace of positive dimension r < n. Let $\varphi: V \to V$ be a K-linear map with $\varphi(U) \subset U$. Argue that:
 - (a) There is an ordered basis B of V such that the coordinate matrix $A_{\varphi}^{B,B}$ has the form

$$A^{B,B}_{\varphi} = \begin{vmatrix} M & N \\ 0 & P \end{vmatrix}$$

where $M \in K^{r \times r}$ and $P \in K(n-r) \times (n-r)$.

- (b) If $im(\varphi) \subset U$, then one can choose B such that P = 0.
- (2) Consider the map $\varphi : \mathbb{Q}^{2 \times 2} \to \mathbb{Q}^{2 \times 2}$ given by $A \mapsto AM MA$, where

$$M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \mathbb{Q}^{2 \times 2}.$$

- (a) Show that φ is a \mathbb{Q} -linear map.
- (b) Find a basis for $ker(\varphi)$ and determine its dimension.
- (3) Consider a matrix $A \in K^{n \times n}$, where K is a field. Show:
 - (a) If rk(A) < n, then there is a matrix $0 \neq B \in K^{n \times n}$ such that $A \cdot B = 0$
 - (b) If $A^k = 0$ for some $k \in \mathbb{N}$, then A is not invertible.
- (4) Let V be a 4-dimensional vector space, and let $U_1, U_2 \subset V$ be two 3-dimensional subspaces of V.
 - (a) Determine the possible values of $m = \dim(U_1 \cap U_2)$.
 - (b) For each value of m in (a), give an example of subspaces $U_1, U_2 \subset V = \mathbb{Q}^4$ whose intersection has dimension m.
- (5) Let $U \subset K^n$ be a subspace, and consider the set

$$V := \{ \varphi \in \operatorname{Hom}(K^n, K^m) \mid U \subset ker(\varphi) \}$$

Prove:

- (a) V is a K-vector space.
- (b) $\dim(V) = m(n \dim(U)).$

- (6) (6/16) In the real vector space of continuous real-valued functions on \mathbb{R} , consider the functions $p_i, i = 0, 1, 2$ and exp defined by $p_i(x) = x^i$ and $exp(x) = e^x$ for $x \in \mathbb{R}$. Set $V := \langle p_0, p_1, p_2, exp \rangle_{\mathbb{R}}$ and consider the endomorphism $\sigma : V \to V$ defined by $(\sigma f)(x) := f(x-1)$ for $x \in \mathbb{R}$.
 - (a) Give the matrix representation of σ with respect to the basis $\{p_0, p_1, p_2, exp\}$.
 - (b) Determine all the eigenvalues and find the bases of all eigenspaces of σ .
 - (c) Is σ diagonalizable?
 - (d) Determine the minimal polynomial of σ .
- (7) Let $A \in \mathcal{M}_{m \times n}$ and $B \in \mathcal{M}_{n \times p}$. Show the following: (a) $\operatorname{rk}(AB) \leq \min\{\operatorname{rk}(A), \operatorname{rk}(B)\}.$
 - (b) $\operatorname{rk}(AB) \ge \operatorname{rk}(A) + \operatorname{rk}(B) n$.
- (8) Let A, B, C be square matrices over a field K such that $A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$. Argue that their minimal polynomials satisfy $\mu_A = lcm(\mu_B, \mu_C)$, where lcm denotes the least common multiple.
- (9) (6/14) Consider a linear transformation T on a vector space V of dimension 4 over \mathbb{R} . On a basis e_1, e_2, e_3, e_4 of V, the transformation is defined by $T(e_1) = e_2, T(e_2) = e_1, T(e_3) = 2e_3 + e_4$, and $T(e_4) = e_3 - 2e_4$.
 - (a) Construct the matrix A of the transformation with respect to the given basis.
 - (b) Determine the characteristic polynomial, eigenvalues, and eigenspaces of A.
 - (c) Determine the kernel and image of the transformation defined by the matrix $A^2 I$ on \mathbb{R}^4 .
 - (d) Is A diagonalizable? Would you answer differently if \mathbb{R} was replaced by \mathbb{Q} ?
- (10) (1/09) Let $n \in \mathbb{N}$ and F be a field. Suppose that $T: F \to F^n$ is a linear transformation. Show that T is injective if and only if T is not the zero map.
- (11) (6/11) Let $A \in M_{n \times n}(\mathbb{C})$ be a Hermitian matrix. Prove or disprove (with a counterexample) the following statements:
 - (a) $\det(A) \in \mathbb{R}$.
 - (b) $|\det(A)| = 1$.
 - (c) If A has exactly one eigenvalue, then A is a real matrix.
 - (d) If $v = (v_1, \ldots, v_n)^T$ is an eigenvector of A, then $\overline{v} = (\overline{v_1}, \ldots, \overline{v_n})^T$ is also an eigenvector of A (where $\overline{v_i}$ denotes the complex conjugate of v_i).