MA 114 Worksheet \#23: Polar coordinates

1. Convert from rectangular to polar coordinates:
(a) $(1, \sqrt{3})$
(b) $(-1,0)$
(c) $(2,-2)$
2. Convert from polar to rectangular coordinates:
(a) $\left(2, \frac{\pi}{6}\right)$
(b) $\left(-1, \frac{\pi}{2}\right)$
(c) $\left(1,-\frac{\pi}{4}\right)$
3. List all the possible polar coordinates for the point whose polar coordinates are $(-2, \pi / 2)$.
4. Sketch the graph of the polar curves:
(a) $\theta=\frac{3 \pi}{4}$
(b) $r=\pi$
(c) $r=\cos \theta$
(d) $r=\cos (2 \theta)$
(e) $r=1+\cos \theta$
(f) $r=2-5 \sin \theta$
5. Find the equation in polar coordinates of the line through the origin with slope $\frac{1}{3}$.
6. Find the polar equation for:
(a) $x^{2}+y^{2}=9$
(b) $x=4$
(c) $y=4$
(d) $x y=4$
7. Convert the equation of the circle $r=2 \sin \theta$ to rectangular coordinates and find the center and radius of the circle.
8. Find the distance between the polar points $(3, \pi / 3)$ and $(6,7 \pi / 6)$.

MA 114 MathExcel Worksheet \#23: Polar Coordinates

1. What is the slope of the line $\theta=\frac{2 \pi}{3}$?
2. Match each equation in Cartesian coordinates with its equation in polar coordinates:

- $x^{2}+y^{2}=4$
- $r^{2}\left(1-2 \sin ^{2} \theta\right)=4$
- $(x-1)^{2}+y^{2}=1$
- $r(\cos \theta+\sin \theta)=4$
- $x^{2}-y^{2}=4$
- $r=2 \cos \theta$
- $x+y=4$
- $r=2$

3. Find an equation in polar coordinates of the line \mathscr{L} with point closest to the origin having polar coordinates $\left(2, \frac{\pi}{9}\right)$.
4. Using the equations $x=r \cos (\theta)$ and $y=r \sin (\theta)$ and the formula for finding $d y / d x$ of a parametric curve, derive the formula for $d y / d x$ of the curve $r=f(\theta)$.
