MA 114 Worksheet #15: Taylor and Maclaurin Series

- 1. (a) Suppose that f(x) has a power series representation for |x| < R. What is the general formula for the Maclaurin series for f?
 - (b) Suppose that f(x) has a power series representation for |x a| < R. What is the general formula for the Taylor series for f about a?
 - (c) Let $f(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4$. Find the Maclaurin series for f.
 - (d) Let $f(x) = 1 + 2x + 3x^2 + 4x^3$. Find the Taylor series for f(x) centered at x = 1.
- 2. Assume that each of the following functions has a power series expansion. Find the Maclaurin series for each. Be sure to provide the domain on which the expansion is valid.
 - (a) $f(x) = \ln(1+x)$
 - (b) $f(x) = xe^{2x}$
- 3. Use a known Maclaurin series to obtain the Maclaurin series for the given function. Specify the radius of convergence for the series.
 - (a) $f(x) = \frac{x^2}{1 3x}$ (b) $f(x) = e^x + e^{-x}$ (c) $f(x) = e^{-x^2}$ (d) $f(x) = x^5 \sin(3x^2)$ (e) $f(x) = \sin^2 x$. HINT: $\sin^2 x = \frac{1}{2}(1 - \cos(2x))$
- 4. Find the following Taylor expansions about x = a for each of the following functions and their associated radii of convergence.
 - (a) $f(x) = e^{5x}, a = 0.$
 - (b) $f(x) = \sin(\pi x), a = 1.$
- 5. Differentiate the series

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

to find a Taylor series for $\cos(x)$.

- 6. Use Maclaurin series to find the following limit: $\lim_{x \to 0} \frac{x \tan^{-1}(x)}{x^3}.$
- 7. Approximate the following integral using a 6th order polynomial for $\cos(x)$.

$$\int_0^1 x \cos(x^3) \, dx$$

8. Use power series multiplication to find the first three terms of the Maclaurin series for

$$f(x) = e^x \ln(1-x).$$

MA 114 Math Excel Worksheet # 15: Taylor Series & Taylor Polynomials

1. Using the Maclaurin series of $\frac{1}{1-x}$, find the Maclaurin series of $\frac{1}{(1-x)^2}$

2. Find the first three terms of the Maclaurin series of f(x) and use it to calculate $f^{(3)}(0)$.

(a)
$$f(x) = (x^2 - x)e^{x^2}$$

(b) $f(x) = \arctan(x^2 - x)$

3. Calculate
$$\frac{\pi}{2} - \frac{\pi^3}{2^3 3!} + \frac{\pi^5}{2^5 5!} - \frac{\pi^7}{2^7 7!} + \cdots$$