MA 114 Worksheet \#14: Power Series

1. (a) Give the definition of the radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$
(b) For what values of x does the series $\sum_{n=1}^{\infty} 2(\cos (x))^{n-1}$ converge?
(c) Find a formula for the coefficients c_{k} of the power series $\frac{1}{0!}+\frac{2}{1!} x+\frac{3}{2!} x^{2}+\frac{4}{3!} x^{3}+\cdots$.
(d) Find a formula for the coefficients c_{n} of the power series $1+2 x+x^{2}+2 x^{3}+x^{4}+$ $2 x^{5}+x^{6}+\cdots$.
(e) Suppose $\lim _{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}=c$ where $c \neq 0$. Find the radius of convergence of the power series $\sum_{n=0}^{\infty \rightarrow \infty} c_{n} x^{n}$.
(f) Consider the function $f(x)=\frac{5}{1-x}$. Find a power series that is equal to $f(x)$ for every x satisfying $|x|<1$.
(g) Define the terms power series, radius of convergence, and interval of convergence.
2. Find the radius and interval of convergence for
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{4^{n}}(x-3)^{n}$
(e) $\sum_{n=0}^{\infty}(5 x)^{n}$
(i) $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{n}}$
(b) $4 \sum_{n=1}^{\infty} \frac{2^{n}}{n}(4 x-8)^{n}$
(f) $\sum_{n=0}^{\infty} \sqrt{n} x^{n}$
(j) $\sum_{n=4}^{\infty} \frac{(-1)^{n} x^{n}}{n^{4}}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(-3)^{n}}$
(g) $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$
(k) $\sum_{n=3}^{\infty} \frac{(5 x)^{n}}{n^{3}}$
(d) $\sum_{n=0}^{\infty} n!(x-2)^{n}$
(h) $\sum_{n=3}^{\infty} \frac{x^{n}}{3^{n} \ln n}$
3. Use term-by-term integration and the fact that $\int_{0}^{x} \frac{1}{1+t^{2}} d t=\arctan (x)$ to derive a power series centered at $x=0$ for the arctangent function. Hint: $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}$.
4. Use the same idea as above to give a series expression for $\ln (1+x)$, given that $\int_{0}^{x} \frac{d t}{1+t}=\ln (1+x)$. You will again want to manipulate the fraction $\frac{1}{1+x}=\frac{1}{1-(-x)}$ as above.
5. Write $\left(1+x^{2}\right)^{-2}$ as a power series. Hint: use term-by-term differentiation.

MA 114 Math Excel Supplemental Worksheet \#14: Power Series

1. Consider the series $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ and $g(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$.
(a) Find the radius and interval of convergence of the series.
(b) Find $f^{\prime}(x), f^{\prime \prime}(x), f^{(3)}(x), f^{(4)}(x)$. Also, find some derivatives of $g(x)$ using term-by-term differentiation. What patterns do you notice between the derivatives of f and the derivatives of g ?
(c) What other functions can you think of that satisfy these properties?
2. Evaluate the following limits.
(a) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$ where x is your favorite real number.
(b) Use (a) to find $\lim _{n \rightarrow \infty}\left(1-\frac{18}{2 n}\right)^{2 n}$
(c) $\lim _{n \rightarrow \infty} n^{\frac{2}{n}}$
(d) $\lim _{n \rightarrow \infty} \frac{2^{n+1}+(n+1)^{2}-\log (2 n+2)}{2^{n}+n^{2}-\log (2 n)}$
3. Use your knowledge of geometric series to find a power series representation of the following functions. For each power series that you find, write down its interval and radius of convergence.
(a) $\frac{1}{8-x}$
(b) $\frac{-1}{(1-x)^{2}}$
(c) $\frac{22.1 x}{x-x^{6}}$
