MA 114 Worksheet \#09: Recursive Sequences and Series

1. Write out the first five terms of
(a) $a_{0}=0, a_{1}=1$ and $a_{n+1}=3 a_{n-1}+a_{n}{ }^{2}$.
(b) $a_{1}=6, a_{n+1}=\frac{a_{n}}{n}$.
(c) $a_{1}=2, a_{n+1}=\frac{a_{n}}{a_{n}+1}$.
(d) $a_{1}=1, a_{n+1}=\sqrt{\left(\frac{2}{a_{n}}\right)^{2}+1}$.
(e) $a_{1}=2, a_{2}=1$, and $a_{n+1}=a_{n}-a_{n-1}$.
2. (a) For what values of x does the sequence $\left\{x^{n}\right\}_{n=1}^{\infty}$ converge?
(b) For what values of x does the sequence $\left\{n^{x}\right\}_{n=1}^{\infty}$ converge?
(c) If $\lim _{n \rightarrow \infty} b_{n}=\sqrt{2}$, find $\lim _{n \rightarrow \infty} b_{n-3}$.
3. (a) Determine whether the sequence defined as follows is convergent or divergent:

$$
a_{1}=1 \quad a_{n+1}=4-a_{n} \quad \text { for } n>1 .
$$

(b) What happens if the first term is $a_{1}=2$?
4. A fish farmer has 5000 catfish in his pond. The number of catfish increases by 8% per month and the farmer harvests 300 catfish per month.
(a) Show that the catfish population P_{n} after n months is given recursively by

$$
P_{n}=1.08 P_{n-1}-300 \quad P_{0}=5000
$$

(b) How many catfish are in the pond after six months?

Math Excel Worksheet \#09: Recursive Sequences

1. The Fibonacci numbers $\left\{F_{n}\right\}_{n=0}^{\infty}$ are defined recursively as follows:

$$
F_{0}=1, F_{1}=1, \text { and for } n \geq 2, F_{n}=F_{n-1}+F_{n-2} .
$$

Fill out the following table.

n	0	1	2	3	4	5	6	7	8	9	10
F_{n}	1	1									
F_{n+1} / F_{n}											

The sequence F_{n+1} / F_{n} converges to the golden ratio, $\phi=\frac{1+\sqrt{5}}{2}$, studied by the Ancient Greeks.
2. A bee keeper has 400 bees in each hive. The number of bees increases by 1.2% per month and the bee keeper harvests honey each month resulting in the death of 20 bees in each hive each month.
(a) Find a recursive formula for the bee population after n months for a single hive.
(b) How many bees are there after six months if there are 6 hives?
(c) Is the bee population increasing or decreasing? If it is decreasing, when will the bees all die out according to your model?
3. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be defined recursively by $a_{1}=5$, and for $n \geq 2, a_{n}=a_{n-1} / 3$. Find a non-recursive formula for a_{n}.

