MA 114 Worksheet \#22: Polar coordinates, Calculus in Polar Coordinates

1. Find the equation in polar coordinates of the line through the origin with slope $\frac{1}{3}$.
2. Find the polar equation for:
(a) $x^{2}+y^{2}=9$
(b) $x=4$
(c) $y=4$
(d) $x y=4$
3. Convert the equation of the circle $r=2 \sin \theta$ to rectangular coordinates and find the center and radius of the circle.
4. Find $d y / d x$ for the following polar curves.
(a) $r=2 \cos \theta+1$
(b) $r=1 / \theta$
5. Compute the slope of the tangent line to the graph of $r=\sin \theta$ at $\theta=\pi / 3$, and sketch the curve and the tangent line.
6. (a) Give the formula for the area of region bounded by the polar curve $r=f(\theta)$ from $\theta=a$ to $\theta=b$. Give a geometric explanation of this formula.
(b) Give the formula for the length of the polar curve $r=f(\theta)$ from $\theta=a$ to $\theta=b$.
(c) Use these formulas to establish the formulas for the area and circumference of a circle.
7. Find the slope of the tangent line to the polar curve $r=\theta^{2}$ at $\theta=\pi$.
8. Find the area enclosed by one leaf of the curve $r=\sin 2 \theta$.
9. Find the arc length of one leaf of the curve $r=\sin 2 \theta$.
10. Find the area in the first quadrant that lies inside the curve $r=2 \cos \theta$ and outside the curve $r=1$.
11. Consider the sequence of circles, C_{n}, defined by the equations $x^{2}+\left(y+\frac{1}{\sqrt{n}}\right)^{2}=\frac{1}{n}$. Define a_{n} as the area of circle C_{n} and b_{n} as the area between circles C_{n} and C_{n+1}.
(a) Sketch the picture of this infinite sequence of circles.
(b) Does $\sum_{n=1}^{\infty} a_{n}$ converge?
(c) Does $\sum_{n=1}^{\infty} b_{n}$ converge?
(d) Define the circles D_{n} by the equations $x^{2}+\left(y+\frac{1}{n}\right)^{2}=\frac{1}{n^{2}}$ with d_{n} as the area of D_{n}. Does $\sum_{n=1}^{\infty} d_{n}$ converge?
