MA 114 Worksheet #22: Polar coordinates, Calculus in Polar Coordinates

- 1. Find the equation in polar coordinates of the line through the origin with slope $\frac{1}{3}$.
- 2. Find the polar equation for:

(a)
$$x^2 + y^2 = 9$$

(b)
$$x = 4$$

(c)
$$y = 4$$

(d)
$$xy = 4$$

- 3. Convert the equation of the circle $r = 2\sin\theta$ to rectangular coordinates and find the center and radius of the circle.
- 4. Find dy/dx for the following polar curves.

(a)
$$r = 2\cos\theta + 1$$

(b)
$$r = 1/\theta$$

- 5. Compute the slope of the tangent line to the graph of $r = \sin \theta$ at $\theta = \pi/3$, and sketch the curve and the tangent line.
- 6. (a) Give the formula for the area of region bounded by the polar curve $r = f(\theta)$ from $\theta = a$ to $\theta = b$. Give a geometric explanation of this formula.
 - (b) Give the formula for the length of the polar curve $r = f(\theta)$ from $\theta = a$ to $\theta = b$.
 - (c) Use these formulas to establish the formulas for the area and circumference of a circle.
- 7. Find the slope of the tangent line to the polar curve $r = \theta^2$ at $\theta = \pi$.
- 8. Find the area enclosed by one leaf of the curve $r = \sin 2\theta$.
- 9. Find the arc length of one leaf of the curve $r = \sin 2\theta$.
- 10. Find the area in the first quadrant that lies inside the curve $r=2\cos\theta$ and outside the curve r=1.
- 11. Consider the sequence of circles, C_n , defined by the equations $x^2 + \left(y + \frac{1}{\sqrt{n}}\right)^2 = \frac{1}{n}$. Define a_n as the area of circle C_n and b_n as the area between circles C_n and C_{n+1} .
 - (a) Sketch the picture of this infinite sequence of circles.
 - (b) Does $\sum_{n=1}^{\infty} a_n$ converge?
 - (c) Does $\sum_{n=1}^{\infty} b_n$ converge?
 - (d) Define the circles D_n by the equations $x^2 + \left(y + \frac{1}{n}\right)^2 = \frac{1}{n^2}$ with d_n as the area of D_n . Does $\sum_{n=1}^{\infty} d_n$ converge?