MA 114 Worksheet \#21: Calculus with Parametric Curves, Polar Coordinates

1. For the following parametric curves, find an equation for the tangent to the curve at the specified value of the parameter.
(a) $x=e^{\sqrt{t}}, y=t-\ln \left(t^{2}\right)$ at $t=1$.
(b) $x=\cos (\theta)+\sin (2 \theta), y=\cos (\theta)$, at $\theta=\pi / 2$.
2. For the following parametric curve, find $d y / d x$.
(a) $x=e^{\sqrt{t}}, y=t+e^{-t}$.
(b) $x=4 \cos (t), y=\sin (2 t)$.
3. Find $d^{2} y / d x^{2}$ for the curve $x=7+t^{2}+e^{t}, y=\cos (t)+\frac{1}{t}, 0<t \leq \pi$.
4. Find the arc length of the following curves.
(a) $x=1+3 t^{2}, y=4+2 t^{3}, 0 \leq t \leq 1$.
(b) $x=4 \cos (t), y=4 \sin (t), 0 \leq t \leq 2 \pi$.
5. What is the speed of the curve $c(t)=(x(t), y(t))$? Use this to find the minimum speed of a particle with trajectory $c(t)=\left(t^{2}, 2 \ln (t)\right)$, for $t>0$.
6. Suppose you wrap a string around a circle. If you unwind the string from the circle while holding it taut, the end of the string traces out a curve called the involute of the circle. Suppose you have a circle of radius r centered at the origin, with the end of the string all the way wrapped up resting at the point $(r, 0)$. As you unwrap the string, define θ to be the angle formed by the x-axis and the line segment from the center of the circle to the point up to which you have unwrapped the string.
(a) Draw a picture and label θ.
(b) Show that the parametric equations of the involute are given by $x=r(\cos \theta+\theta \sin \theta)$, $y=r(\sin \theta-\theta \cos \theta)$.
(c) Find the length of the involute for $0 \leq \theta \leq 2 \pi$.
7. Convert from rectangular to polar coordinates:
(a) $(1, \sqrt{3})$
(b) $(-1,0)$
8. Convert from polar to rectangular coordinates:
(a) $\left(2, \frac{\pi}{6}\right)$
(b) $\left(-1, \frac{\pi}{2}\right)$
9. Sketch the graph of the polar curves:
(a) $\theta=\frac{3 \pi}{4}$
(b) $r=\pi$
(c) $r=\cos \theta$
(d) $r=\cos (2 \theta)$
(e) $r=1+\cos \theta$
