MA 114 Worksheet \#16: Average Value of a Function, Volumes I

1. Write down the equation for the average value of an integrable function $f(x)$ on $[a, b]$.
2. Find the average value of the following functions over the given interval.
(a) $f(x)=x^{3},[0,4]$
(b) $f(x)=x^{3},[-1,1]$
(e) $f(x)=\frac{\sin \pi / x}{x^{2}},[1,2]$
(c) $f(x)=\cos (x),\left[0, \frac{\pi}{6}\right]$
(f) $f(x)=e^{-n x},[-1,1]$
(d) $f(x)=\frac{1}{x^{2}+1},[-1,1]$
(g) $f(x)=2 x^{3}-6 x^{2},[-1,3]$
(h) $f(x)=x^{n}$ for $n \geq 0,[0,1]$
3. If a solid has a cross-sectional area given by the function $A(x)$, what integral should be evaluated to find the volume of the solid?
4. Calculate the volume of the following solid. The base is a square, one of whose sides is the interval $[0, l]$ along the x-axis. The cross sections perpendicular to the x-axis are rectangles of height $f(x)=x^{2}$.
5. Calculate the volume of the following solid. The base is the region enclosed by $y=x^{2}$ and $y=3$. The cross sections perpendicular to the y-axis are squares.

6 . The base of a certain solid is the triangle with vertices at $(-10,5),(5,5)$, and the origin. Cross-sections perpendicular to the y-axis are squares. Find the volume of the solid.
7. Calculate the volume of the following solid. The base is a circle of radius r centered at the origin. The cross sections perpendicular to the x-axis are squares.
8. Calculate the volume of the following solid. The base is the parabolic region $\{(x, y) \mid$ $\left.x^{2} \leq y \leq 4\right\}$. The cross sections perpendicular to the y-axis are right isosceles triangles whose hypotenuse lies in the region.
9. Sketch the solid given by the integral

$$
\pi \int_{0}^{1}\left(y^{2}+1\right)^{2}-1 d y
$$

10. For each of the following, use disks or washers to find the an integral expression for the volume of the region. Evaluate the integrals for parts (a) and (d).
(a) R is region bounded by $y=1-x^{2}$ and $y=0$; about the x-axis.
(b) R is region bounded by $y=\frac{1}{x}, x=1, x=2$, and $y=0$; about the x-axis.
(c) R is region bounded by $x=2 \sqrt{y}, x=0$, and $y=9$; about the y-axis.
(d) R is region bounded by $y=1-x^{2}$ and $y=0$; about the line $y=-1$.
(e) Between the regions in part (a) and part (d), which volume is bigger? Why?
(f) R is region bounded by $y=e^{-x}, y=1$, and $x=2$; about the line $y=2$.
(g) R is region bounded by $y=x$ and $y=\sqrt{x}$; about the line $x=2$.
11. Find the volume of the cone obtained by rotating the region under the segment joining $(0, h)$ and $(r, 0)$ about the y-axis.
12. The torus is the solid obtained by rotating the circle $(x-a)^{2}+y^{2}=b^{2}$ around the y-axis (assume that $a>b$). Show that it has volume $2 \pi^{2} a b^{2}$.
[Hint: Draw a picture, set up the problem and evaluate the integral by interpreting it as the area of a circle.]
