MA 114 Worksheet \#13: Power Series

1. (a) Define the terms power series, radius of convergence, and interval of convergence.
(b) Give the definition of the radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$
(c) For what values of x does the series $\sum_{n=1}^{\infty} 2(\cos (x))^{n-1}$ converge?
(d) Find a formula for the coefficients c_{k} of the power series $\frac{1}{0!}+\frac{2}{1!} x+\frac{3}{2!} x^{2}+\frac{4}{3!} x^{3}+\cdots$.
(e) Find a formula for the coefficients c_{n} of the power series $1+2 x+x^{2}+2 x^{3}+x^{4}+$ $2 x^{5}+x^{6}+\cdots$.
(f) Suppose $\lim _{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}=c$ where $c \neq 0$. Find the radius of convergence of the power series $\sum_{n=0}^{\infty \rightarrow \infty} c_{n} x^{n}$.
(g) Consider the function $f(x)=\frac{5}{1-x}$. Find a power series that is equal to $f(x)$ for every x satisfying $|x|<1$.
2. Find the radius and interval of convergence for
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{4^{n}}(x-3)^{n}$.
(g) $\sum_{n=0}^{\infty} \frac{x^{n}}{\sqrt{n}}$
(b) $4 \sum_{n=0}^{\infty} \frac{2^{n}}{n}(4 x-8)^{n}$.
(h) $\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n} \ln n}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(-3)^{n}}$.
(d) $\sum_{n=0}^{\infty} n!(x-2)^{n}$.
(i) $\sum_{n=0}^{\infty} \frac{(x=2)^{n}}{n^{n}}$
(e) $\sum_{n=0}^{\infty}(5 x)^{n}$
(j) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n^{4}}$
(f) $\sum_{n=0}^{\infty} \sqrt{n} x^{n}$
(k) $\sum_{n=0}^{\infty} \frac{(5 x)^{n}}{n^{3}}$
3. Use term by term integration and the fact that $\int \frac{1}{1+x^{2}} d x=\arctan (x)$ to derive a power series centered at $x=0$ for the arctangent function. Hint: $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}$.
4. Use the same idea as above to give a series expression for $\ln (1+x)$, given that $\frac{d x}{1+x}=\ln (1+x)$.

You will again want to manipulate the fraction $\frac{1}{1+x}=\frac{1}{1-(-x)}$ as above.
5. Write $\left(1+x^{2}\right)^{-2}$ as a power series. Hint: use term by term differentiation.

