Spring 2017 MA 114 Worksheet 13 Tuesday, Feb. 28

MA 114 Worksheet #13: Power Series

1. (a) Define the terms power series, radius of convergence, and interval of convergence.

(b) Give the definition of the radius of convergence of a power series Z anz"
n=0
¢) For what values of x does the series > . 2(cos(z el converge?
n=1
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d) Find a formula for the coefficients ¢, of the power series — + —z 4+ —a2+ —z34- - .
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(e) Find a formula for the coefficients ¢, of the power series 1 + 2z + x* + 22° + 2 +
205 + 28+ -+
(f) Suppose lim {/|c,| = ¢ where ¢ # 0. Find the radius of convergence of the power
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(g) Consider the function f(z) = T Find a power series that is equal to f(z) for
-
every z satisfying |z| < 1.

2. Find the radius and interval of convergence for
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522 dx = arctan(x) to derive a
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power series centered at x = 0 for the arctangent function. HINT: = .
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3. Use term by term integration and the fact that /

d
4. Use the same idea as above to give a series expression for In(1+z), given that f =In(1+2).
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You will again want to manipulate the fraction as above.

5. Write (1 + 2?)~2 as a power series. HINT: use term by term differentiation.



