MA 114 Worksheet #9: Series and The Integral Test

- 1. Identify the following statements as true or false and explain your answers.
 - (a) If the sequence of partial sums of an infinite series is bounded the series converges.
 - (b) $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} a_n$ if the series converges.
 - (c) $\sum_{n=1}^{\infty} a_n = \sum_{n=0}^{\infty} a_{n+1}$ if both series converge.
 - (d) If c is a nonzero constant and if $\sum_{n=1}^{\infty} ca_n$ converges then so does $\sum_{n=1}^{\infty} a_n$.
 - (e) A finite number of terms of an infinite series may be changed without affecting whether or not the series converges.
 - (f) Every infinite series with only finitely many nonzero terms converges.
- 2. Write the following in summation notation:
 - (a) $\frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{36} + \dots$
 - (b) $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$
- 3. Calculate S_3 , S_4 , and S_5 and then find the sum of the telescoping series $S = \sum_{n=1}^{\infty} \left(\frac{1}{n+1} \frac{1}{n+2} \right)$.
- 4. Use the formula for the sum of a geometric series to find the sum or state that the series diverges and why:
 - (a) $\frac{1}{1} + \frac{1}{8} + \frac{1}{8^2} + \dots$
 - (b) $\sum_{n=0}^{\infty} \left(\frac{\pi}{e}\right)^n$
- 5. Use the Integral Test to determine if the following series converge or diverge:
 - (a) $\sum_{n=0}^{\infty} \frac{1}{1+n^2}$
 - (b) $\sum_{n=1}^{\infty} n^2 e^{-n^3}$
 - (c) $\sum_{n=2}^{\infty} \frac{n}{(n^2+2)^{3/2}}$
- 6. Show that the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges otherwise by Integral Test.