MA 114 Worksheet \#08: Recursive Sequences

1. Write out the first five terms of the following recursive sequences:
(a) $a_{0}=0, a_{1}=1$ and $a_{n+1}=3 a_{n-1}+a_{n}{ }^{2}$.
(b) $a_{1}=6, a_{n+1}=\frac{a_{n}}{n}$.
(c) $a_{1}=2, a_{n+1}=\frac{a_{n}}{a_{n}+1}$.
(d) $a_{1}=1, a_{n+1}=\sqrt{\left(\frac{2}{a_{n}}\right)^{2}+1}$.
(e) $a_{1}=2, a_{2}=1$, and $a_{n+1}=a_{n}-a_{n-1}$.
2. (a) For what values of x does the sequence $\left\{x^{n}\right\}_{n=1}^{\infty}$ converge?
(b) For what values of x does the sequence $\left\{n^{x}\right\}_{n=1}^{\infty}$ converge?
(c) If $\lim _{n \rightarrow \infty} b_{n}=\sqrt{2}$, find $\lim _{n \rightarrow \infty} b_{n-3}$.
3. (a) Determine whether the sequence defined as follows is convergent or divergent:

$$
a_{1}=1 \quad a_{n+1}=4-a_{n} \quad \text { for } n>1 .
$$

(b) What happens if the first term is $a_{1}=2$?
4. A fish farmer has 5000 catfish in his pond. The number of catfish increases by 8% per month and the farmer harvests 300 catfish per month.
(a) Show that the catfish population P_{n} after n months is given recursively by

$$
P_{n}=1.08 P_{n-1}-300 \quad P_{0}=5000
$$

(b) How many catfish are in the pond after six months?

