MA 114 Worksheet #08: Recursive Sequences

- 1. Write out the first five terms of the following recursive sequences:
 - (a) $a_0 = 0$, $a_1 = 1$ and $a_{n+1} = 3a_{n-1} + a_n^2$.

(b)
$$a_1 = 6, a_{n+1} = \frac{a_n}{n}.$$

(c)
$$a_1 = 2, a_{n+1} = \frac{a_n}{a_n + 1}$$

(d)
$$a_1 = 1, a_{n+1} = \sqrt{\left(\frac{2}{a_n}\right)^2 + 1}.$$

- (e) $a_1 = 2, a_2 = 1$, and $a_{n+1} = a_n a_{n-1}$.
- 2. (a) For what values of x does the sequence $\{x^n\}_{n=1}^{\infty}$ converge?
 - (b) For what values of x does the sequence $\{n^x\}_{n=1}^{\infty}$ converge?
 - (c) If $\lim_{n \to \infty} b_n = \sqrt{2}$, find $\lim_{n \to \infty} b_{n-3}$.
- 3. (a) Determine whether the sequence defined as follows is convergent or divergent:

$$a_1 = 1$$
 $a_{n+1} = 4 - a_n$ for $n > 1$.

- (b) What happens if the first term is $a_1 = 2$?
- 4. A fish farmer has 5000 catfish in his pond. The number of catfish increases by 8% per month and the farmer harvests 300 catfish per month.
 - (a) Show that the catfish population P_n after n months is given recursively by

$$P_n = 1.08P_{n-1} - 300 \qquad P_0 = 5000.$$

(b) How many catfish are in the pond after six months?