MA 114 Worksheet #06: Sequences

- 1. (a) Give the precise definition of a **sequence**.
 - (b) What does it mean to say that $\lim_{x\to a} f(x) = L$ when $a = \infty$? Does this differ from $\lim_{n\to\infty} f(n) = L$? Why or why not?
 - (c) What does it means for a sequence to converge? Explain your idea, not just the definition in the book.
 - (d) Sequences can diverge in different ways. Describe two distinct ways that a sequence can diverge.
 - (e) Give two examples of sequences which converge to 0 and two examples of sequences which converges to a given number $L \neq 0$.
- 2. Write the first four terms of the sequences with the following general terms:

(a)
$$\frac{n!}{2^n}$$

(d)
$$\{a_n\}_{n=1}^{\infty}$$
 where $a_n = \frac{3}{n}$.

(b)
$$\frac{n}{n+1}$$

(e)
$$\{a_n\}_{n=1}^{\infty}$$
 where $a_n = 2^{-n} + 2$.

(c)
$$(-1)^{n+1}$$

(f)
$$\{b_k\}_{k=1}^{\infty}$$
 where $b_k = \frac{(-1)^k}{k^2}$.

3. Find a formula for the nth term of each sequence.

(a)
$$\left\{ \frac{1}{1}, -\frac{1}{8}, \frac{1}{27}, -\frac{1}{64}, \dots \right\}$$

(b)
$$\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots\right\}$$

(c)
$$\{1,0,1,0,1,0,\ldots\}$$

(d)
$$\left\{-\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, -\frac{5}{6}, \dots, \right\}$$

- 4. Suppose that a sequence $\{a_n\}$ is bounded above and below. Does it converge? If not, find a counterexample.
- 5. The limit laws for sequences are the same as the limit laws for functions. Suppose you have sequences $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ with $\lim_{n\to\infty} a_n = 15$, $\lim_{n\to\infty} b_n = 0$ and $\lim_{n\to\infty} c_n = 1$. Use the limit laws of sequences to answer the following questions.

(a) Does the sequence
$$\left\{\frac{a_n \cdot c_n}{b_n + 1}\right\}_{n=1}^{\infty}$$
 converge? If so, what is its limit?

(b) Does the sequence $\left\{\frac{a_n + 3 \cdot c_n}{2 \cdot b_n + 2}\right\}_{n=1}^{\infty}$ converge? If so, what is its limit?