Math 2551 Worksheet Answers - Review from Single-Variable Calculus and Linear Algebra

1. $2 \mathbf{v}=\langle 2,4,2\rangle, \mathbf{v}-\mathbf{w}=\langle 2,2,-1\rangle, \mathbf{v} \cdot \mathbf{w}=1$.
2. $a+15 b+7 c$
3. $\mathbf{u} \cdot \mathbf{v}=0$ (because the vectors are orthogonal)
4. (a) $\mathbf{v} \cdot \mathbf{u}=-25$
(b) $\cos (\theta)=\frac{-25}{25}=-1$
(c) $(3 \mathbf{v}) \cdot(2 \mathbf{u})=3(2)(-25)=-150$.
5. (a) $16 / 15$
(b) $\frac{\pi}{2}$
(c) $\ln (4)-\frac{3}{4}$
6. $f_{\max }=2 e^{4}$, since the function has no critical points and is increasing on this interval.
7. Area $=\frac{9}{2}$.

Math 2551 Worksheet Answers: \mathbb{R}^{3}

1. $x=0, y=3 \sqrt{3} / 2, z=3 / 2$.
2. The first car is faster, at approx $43.28 \mathrm{~km} / \mathrm{h}$.
3. $(x-1)^{2}+(y+2)^{2}+(z-3)^{2}=16$.

Math 2551 Worksheet 2 Answers: \mathbb{R}^{3} and Cross Products

1. Let $P=(1,-1,2), Q=(2,0,-1)$, and $R=(0,2,1)$.
(a) $2 \sqrt{6}$
(b) $\frac{1}{\sqrt{6}}\langle 2,1,1\rangle$
2. (a) True
(b) True
(c) True
3. (a) Makes sense, scalar
(b) Does not make sense
(c) Makes sense, vector
(d) Does not make sense
4. Max value is $\sqrt{13}$, given by $\mathbf{v}=\mathbf{u} /|\mathbf{u}|$ and min value is $-\sqrt{13}$, given by $\mathbf{v}=-\mathbf{u} /|\mathbf{u}|$.

Math 2551 Worksheet Answers: Lines and Planes

1. (a) $\mathbf{r}(t)=\langle 1-2 t, 2-2 t,-1+2 t\rangle$
(b) $\mathbf{r}(t)=\langle t,-7+2 t, 2 t\rangle$
(c) $\mathbf{r}(t)=\langle 1+14 t, 2 t, 15 t\rangle$
2. vector: $3 \mathbf{i}-3 \mathbf{j}+3 \mathbf{k}$.
plane: $3(x-2)-3(y-1)+3(z+1)=0$
3. many correct solutions; pick two distinct points off of the line $P Q$ which are not collinear with the given points. Two such planes are $-2(x-1)+3(y+1)+5(z-1)=0$ and $-3(x-1)+3(y+1)+3(z-1)=0$.
4. $(2,7,3)$
5. Parallel: $\left\langle A_{1}, B_{1}, C_{1}\right\rangle=\lambda\left\langle A_{2}, B_{2}, C_{2}\right\rangle$ for some $\lambda \neq 0$

Perpendicular: $\left\langle A_{1}, B_{1}, C_{1}\right\rangle \cdot\left\langle A_{2}, B_{2}, C_{2}\right\rangle=0$
6. (a) distance $=\frac{\overrightarrow{Q P} \cdot \mathbf{n}}{\mathbf{n}}$ with $Q=(1,0,1)$ (any point on the plane works). So the distance is $\frac{\langle 0,2,2\rangle \cdot\langle 2,-1,3\rangle}{|\langle 2,-1,3\rangle|}=\frac{4}{\sqrt{14}}$
(b) distance is $|\overrightarrow{Q P}| \sin (\theta)=\frac{|\overrightarrow{Q P} \times \mathbf{v}|}{|\mathbf{v}|}$ where $Q=(1,1,1), \mathbf{v}=\langle 2,3,-1\rangle$ (any point on the line and any direction vector works). So the distance is $\frac{\sqrt{69}}{\sqrt{14}}$.

Math 2551 Worksheet Answers: Quadric Surfaces

1. (a) elliptical cylinder, oriented along the y-axis, cross-sections are ellipses in the $y=k$ planes or vertical/horizontal lines in the $x=k$ and $z=k$ planes.
(b) ellipsoid, centered at the origin, wider in the z and y directions than the x direction, cross-sections are circles in the $x=k$ planes (if $k<1$), ellipses in the $z=k$ and $y=k$ planes $(k<3)$
(c) circular cone, oriented along the y-axis, cross sections are circles in the $y=k$ planes and lines in the $x=k$ and $z=k$ planes
(d) elliptical paraboloid, oriented in the positive z direction, shifted up 4 units, crosssections are circles in the $z=k$ planes for $k \geq 4$ and parabolas in the $x=k$ or $y=k$ planes
(e) sphere, centered at $(0,0,0)$, radius 4 , cross-sections are circles in $x=k, y=k$, and $z=k$ planes for $0 \leq k \leq 4$.

Math 2551 Worksheet Answers: Curves in Space and Their Tangents

1. This curve's graph is a spiral, narrowing to a point at the origin when $t=0$ and widening outward around the z-axis for larger/smaller t.
2. $\mathbf{r}(t)=\langle 3 \cos (t), 3 \sin (t), 2-3 \sin (t)\rangle, 0 \leq t \leq 2 \pi$.
3. All three functions describe part of the same set of points in \mathbb{R}^{3}, which lie above the line $y=x$ in the $x y$-plane and form a parabola in the plane $x=y . \mathbf{f}$ traces out all of the points on this parabola, \mathbf{g} only those in the first octant, and \mathbf{h} only those which lie above the square $[-1,1] \times[-1,1]$.
4. Many possible answers; depending on the domain and functions involved. If the domain is bounded, e.g. $[a, b]$, then letting $s=b+(a-b) t$ and taking $\mathbf{r}(s)$ as the new parametric equations works. If the domain is $(-\infty, \infty)$, we can just let $s=-t$.
5. (a) $y=\frac{2}{9} x^{2}$ for $x>0$
(b) $\mathbf{v}(\ln (3))=3 \mathbf{i}+4 \mathbf{j}$

$$
\mathbf{a}(\ln (3))=3 \mathbf{i}+8 \mathbf{j} .
$$

6. $x(s)=s, y(s)=\frac{s}{3}, z(s)=s$
7. $(1,1,1)$ (where the first parameter is 1 and the second is 0). The angle is $\arccos (3 / \sqrt{14})$. The bees would not collide, since the first bee reaches the point at $t=1$ and the second bee at $t=0$.
8. $-\frac{1}{\sqrt{2}}\left(x-\frac{1}{\sqrt{2}}\right)+\frac{1}{\sqrt{2}}\left(y-\frac{1}{\sqrt{2}}\right)+6(z-0)=0$

OR $x-y-6 \sqrt{2} z=0$

Math 2551 Worksheet 5 Answers: Calculus of Vector-Valued Functions

1. $\mathbf{r}(t)=\left\langle-\frac{1}{2} t^{2}+5 t+10,-\frac{1}{2} t^{2}+10,-\frac{1}{2} t^{2}+10\right\rangle, \quad t \geq 0$.
2. A baseball is hit when it is 2.5 ft above the ground. It leaves the bat with an initial velocity of $140 \mathrm{ft} / \mathrm{sec}$ at a launch angle of 30°. At the instant the ball is hit, an instantaneous gust of wind blows against the ball, adding a component of $-14 \hat{i}(\mathrm{ft} / \mathrm{sec})$ to the ball's initial velocity. A 15 ft high fence lies 400 ft from the home plate in the direction of the flight. (Note that gravity, $\mathrm{g}=32 \mathrm{ft} / \mathrm{sec}^{2}$)
(a) Sorry, no sketch. :)
(b) $\vec{r}(t)=\left(140 \cos 30^{\circ}-14\right) t \hat{i}+\left(2.5+\left(140 \sin 30^{\circ}\right) t-16 t^{2}\right) \hat{j}=(70 \sqrt{3}-14) t \hat{i}+(2.5+$ $\left.70 t-16 t^{2}\right) \hat{j}$.
(c) $y_{\max }=\frac{\left(140 \sin 30^{\circ}\right)^{2}}{64}+2.5=\frac{70^{2}}{64}+2.5=79.0625 \mathrm{ft}$., which is reached at $t=\frac{140 \sin 30^{\circ}}{32}=$ $\frac{70}{32}=2.1875 \mathrm{~s}$.
(d) For the time, solve $y=2.5+70 t-16 t^{2}=0$ for t. Using quadratic formula, we have $t=4.41 \mathrm{~s}$. Then, the range at $t=4.41$ is $x(4.41)=\left(140 \cos 30^{\circ}-14\right)(4.41)=472.94$ ft.
(e) For the time, solve $y=2.5+70 t-16 t^{2}=20$ for t. Using quadratic formula, we have $t=0.27,4.11$ seconds. Then, the range at those times are $x(0.27)=29 \mathrm{ft}$ and $x(4.11)=441 \mathrm{ft}$.
(f) Yes, according to part (d), the ball is still 20 feet above the ground when it is 441 feet from home plate.

Math 2551 Worksheet Answers: Arc Length

1. $\mathbf{T}(t)=\frac{1}{13}\langle 12 \cos (2 t),-12 \sin (2 t), 5\rangle$
length: 13π
2. $(0,5,24 \pi)$
3. $\int_{0}^{1} \sqrt{\left(\frac{2}{t+1}\right)^{2}+\left(2 e^{2 t}+1\right)^{2}+(2 \sin (t) \cos (t))^{2}} d t$
4. $\sqrt{6}$

Math 2551 Worksheet Answers: Curvature and Normals

1. $\mathbf{T}(t)=\frac{1}{1+e^{2 t}}\left\langle\sqrt{2} e^{t}, e^{2 t},-1\right\rangle$
$\mathbf{N}(t)=\frac{1}{1+e^{2 t}}\left\langle 1-e^{2 t}, \sqrt{2} e^{t}, \sqrt{2} e^{t}\right\rangle$
$\kappa(t)=\frac{\sqrt{2} e^{2 t}}{\left(e^{2 t}+1\right)^{2}}$
2. $\mathbf{T}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j}$
$\mathbf{N}(t)=-\sin (t) \mathbf{i}+\cos (t) \mathbf{j}$
$\kappa(t)=\frac{1}{t}$
3. $\mathbf{T}=\left\langle\frac{1}{1+t^{2}}, \frac{t^{2}}{1+t^{2}}\right\rangle$
$\mathbf{N}=\left\langle\frac{-t}{\sqrt{2 t^{2}}}, \frac{t}{\sqrt{2 t^{2}}}\right\rangle$
The normal vector does not exist when $t=0$; as t passes from negative to positive values the normal vector changes which side of the curve it is on.
4. The point of greatest curvature occurs at $x=0$. Using the parameterization $\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle$ gives $\kappa(t)=\frac{2}{\left(1+t^{2}\right)^{3 / 2}}$, which is maximized when $t=0$.

Math 2551 Worksheet Answers: Multivariable Functions

1. Find and sketch the domain for each function.
(a) $\{(x, y) \mid x-y \geq 1\}$
(b) $\{(x, y)|x \geq 4,|y| \geq 1\} \cup\{(x, y)|x<4,|y|<1\}$
(c) $\left\{(x, y) \mid 4 x^{2}-1 \leq y \leq 4 x^{2}+1\right\}$
(d) All of \mathbb{R}^{2} except the circle $x^{2}+y^{2}=4$
(e) All of the disk $x^{2}+y^{2}<4$ except the circle $x^{2}+y^{2}=3$.
2. (a) a collection of concentric ellipses
(b) a collection of unequally spaced concentric circles
(c) a collection of unequally spaced parallel lines
(d) a collection of equally spaced parallel lines
(e) a collection of unequally spaced concentric circles
(f) a collection of equally spaced concentric circles
(g) two straight lines and a collection of hyperbolas
3. The plane $4 x+y+3=0$, except for those points with $x+y=-1$.
4. The sphere $3=x^{2}+y^{2}+z^{2}$
5. When $x=0$, the cross-section is the parabola $z=y^{2}$.

When $y=0$, the cross-section is the parabola $z=x^{2}$.
When $x=y$, the cross-section is the line $z=0$.
The level curves are pairs of parallel lines $y=x \pm \sqrt{k}$.

Math 2551 Worksheet Answers: Limits and Continuity

1. $\frac{1}{36}$
2. $\frac{1}{12}$
3. $\frac{1}{4}$
4. Does not exist.
5. f is continuous on its entire domain: all (x, y) such that neither $x=0$ nor $y=0$.
6. f is continuous on its entire domain: all (x, y, z) except the sphere $x^{2}+y^{2}+z^{2}=e$.

Math 2551 Worksheet 8 Answers - Review for Exam 1

1. $\int_{0}^{1} \sqrt{1+e^{2 t}} d t$
2. $\ell(s)=\langle 0,-s,-s\rangle$
3. $\mathbf{T}(t)=\langle-\sin (t), \cos (t)\rangle$
$\mathbf{N}(t)=\langle-\cos (t),-\sin (t)\rangle$
Into
4. $\kappa=\frac{a}{1+a^{2}}$
5. $-3(x-3)+(y-2)-2 z=0$

Intersection point is $(0,3,-2)$, when $t=1$.
6. (a) $\{(x, y)||x| \leq 3,|y| \geq 2\}$
(b) $1 \leq x^{2}+y^{2} \leq 3$
(c) $\frac{x^{2}}{16}+\frac{y^{2}}{4} \leq 1$
7. $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}+\frac{2}{3}\left(t^{3 / 2}-1\right) \mathbf{k}$
8. No, because the limit of f as $(x, y) \rightarrow(0,0)$ does not exist.

Math 2551 Worksheet Answers: Partial Derivatives

1. (a) $f_{x}(-2,-1) \approx 0.75$
(b) $f_{y}(-2,-1) \approx 1.5$
(c) There are several possible points (these are places where the tangent to a contour is horizontal): $(0,-.5),(-.5,-1.25)$, etc.
(d) Again, there are many possible points; any point on the $4,5,6$ contours in quadrant IV will work.
2. (a) C_{T} : (meters/second)/ degree Celsius - this gives the change in speed for each one degree C of temperature increase. C_{S} (meters/second)/(grams/liter) - this gives the change in speed for each one gram/liter increase in salinity C_{D} : (meters/second)/meter - this gives the change in speed for each one meter increase in depth below the surface
(b) $C_{T}=4.5-0.1 T+0.0009 T^{2}-0.01(S-35) C_{S}=1.5-0.01 T C_{D}=0.015$
(c) $\operatorname{At}(T, S, D)=(10,35,100)$, we have $C_{T}=3.59, C_{S}=0.5, C_{D}=0.015$. This tells us that if we increase the temperature, salinity, or depth from these conditions the speed of sound will increase as well.
3. $f_{x x}=e^{x}, f_{x y}=f_{y x}=\frac{1}{y}, f_{y y}=-\frac{x}{y^{2}}$
4. $f_{x}=\sin (y z), f_{y}=x z \cos (y z), f_{z}=x y \cos (y z), f_{x z z}=-y^{2} \sin (y z)$
5. Note this does not have a definitive right answer - some differences may arise and that's good! Discuss!
(a) First y since $\partial^{3} f / \partial y^{3}=0$ and the y-partial derivatives are easier
(b) First y, since $\partial^{3} f / \partial y^{3}=0$
(c) First y, since $\partial^{2} f / \partial y^{2}=0$
(d) First x, since $\partial^{2} f / \partial x^{2}=0$ and the x-partial derivatives are easier.

A common theme is to work with the variable with lower powers/simpler expressions first when taking mixed partials.

Math 2551 Worksheet Answers: Chain Rule

1. $\frac{d z}{d t}\left(t_{0}\right)=1$
2. $t=-4 / 3$
3. $\frac{\partial w}{\partial r}(2, \pi / 2)=2 \pi \quad \frac{\partial w}{\partial \theta}(2, \pi / 2)=-2 \pi$
4. $\frac{d w}{d t}(2)=-10 . \frac{d w}{d t}(1)$ cannot be computed from the given information because we do not know the values of g_{x} or g_{y} at $(x(1), y(1))=(1,3)$. We do not use the values of $g(1,0), g(-1,2), g_{x}(-1,2), g_{y}(-1,2)$.

Math 2551 Worksheet Answers:Gradient and Directional Derivatives

1. (a) Negative
(b) Negative
(c) Approximately zero
(d) Positive
(e) Positive
2. Tangent line: $-2(x-2)+2(y+2)=0$

3. $D_{\mathbf{u}} g(1,-1)=\frac{21}{13}$
4. (a) Ascend at a rate of 0.8 vertical meters per horizontal meter
(b) Descend at a rate of $\sqrt{2} / 10$ vertical meters per horizontal meter
(c) $\langle-0.6,-0.8\rangle$ is the direction of largest slope with rate of ascent 1 vertical meter per horizontal meter.
5. (a) $\langle-1 / \sqrt{2}, 1 / \sqrt{2}\rangle$
(b) $2 \sqrt{2}$
(c) $\langle 1 / \sqrt{2},-1 / \sqrt{2}\rangle$
(d) $\langle 1 / \sqrt{2}, 1 / \sqrt{2}\rangle$

Math 2551 Worksheet Answers: Linearization and Tangent Planes, Optimization

1. $L(x, y)=e^{3}-e^{3}(x-1)+2 e^{3}(y-2)$
2. $L(x, y, z)=z$
3. $f(2.95,7.1)=4-1 / 40$
4. No, there are two different tangent planes. No, the function is not differentiable.
5. $z=1-1 / 2(x-1)+1 / 2(y-2)$

Math 2551 Worksheet Answers: Optimization I

1. Saddle point at $(0,0)$ and local minimum at $(0,-2)$.
2. Saddle point at $(0,0)$ and local maximum at $(-1,-1)$.
3. Yes, this must be a saddle point because $f_{x x}(a, b) f_{y y}(a, b)<0$ so $\operatorname{det}(H f)=f_{x x}(a, b) f_{y y}(a, b)-$ $f_{x y}^{2}(a, b)<0$.
4. (a) Minimum is 0 at $(0,0)$ since $f(x, y)>0$ for all other (x, y).
(b) Maximum is 1 at $(0,0)$ since $f(x, y)<1$ for all other (x, y).
(c) Neither since $f(x, y)<0$ for $x<0$ and $f(x, y)>0$ for $x>0$.
(d) Neither since $f(x, y)<0$ for $x<0$ and $f(x, y)>0$ for $x>0$.
(e) Neither since $f(x, y)<0$ for $x<0$ and $y>0$, but $f(x, y)>0$ for $x>0$ and $y>0$.
(f) Minimum is 0 at $(0,0)$ since $f(x, y)>0$ for all other (x, y).

Math 2551 Worksheet Answers: Optimization II

1. The absolute maximum is 17 , achieved at $(0,4)$ and $(4,4)$, and the absolute minimum is 1 , achieved at $(0,0)$.
2. The dimensions are $3 \times 3 \times 3$ and the surface area is 54 .

Math 2551 Worksheet Answers: Lagrange Multipliers

1. $V(2,2,1)=4$ cubic units
2. The extreme values are 1 and 2 .
3. The extreme values are 1 and $\sqrt{3}$.
4. The closest point is $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and the farthest point is $(-1,-1,2)$.
5. $\frac{8 r^{3}}{3 \sqrt{3}}$

Math 2551 Worksheet Answers: Double Integrals on Rectangles

1.

2.
3. $9 \ln (2)$
4. $160 / 3$ cubic units.
5. $e^{3}-4$
6. The integrals evaluate to $\pi / 4$ and $-\pi / 4$ respectively. This does not violate Fubini's theorem because this function is not continuous on $[0,1] \times[0,1]$ (it has an asymptote at $(0,0))$

Math 2551 Worksheet Answers: Double Integrals on General Regions

1. $2+\frac{1}{2} \pi^{2}$
2. (a) Negative
(b) Positive
(c) Zero
(d) Zero
(e) Zero
3. (a) $\int_{0}^{\ln (3)} \int_{e^{-x}}^{1} d y d x$ and $\int_{1 / 3}^{1} \int_{-\ln (y)}^{\ln (3)} d x d y$
(b) $\int_{-1}^{2} \int_{x^{2}}^{x+2} d y d x$ and $\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} d x d y+\int_{1}^{4} \int_{y-2}^{\sqrt{y}} d x d y$
4. $\int_{0}^{\sqrt{\pi}} \int_{0}^{x} \cos \left(x^{2}\right) d y d x=0$
5. $\frac{2}{15}$
6. $16 / 3$
7. $32 / 3$

Math 2551 Worksheet 16 Answers: Applications, Polar Double Integrals

1. Answers will vary a bit through the estimation process

4 subdivisions: $31.75 \leq T_{\text {avg }} \leq 52.5$
16 subdivisions: $33.18 \leq T_{\text {avg }} \leq 50.06$
25 subdivisions: $36.32 \leq T_{\text {avg }} \leq 49.8$

Colorado is a rectangle, which makes it easy to subdivide. Wyoming would also work well.
2. On square: $f_{\text {avg }}=\frac{1}{1} \cdot \frac{1}{4}=\frac{1}{4}$

On quarter circle: $f_{\text {avg }}=\frac{1}{\pi / 4} \cdot \frac{1}{8}=\frac{1}{2 \pi}$
3. 50 people

Math 2551 Worksheet Answers: Polar Double Integrals

1. $5 \pi-26$
2. $\frac{\pi}{2}\left(1-e^{-4}\right)$.
3. $\frac{3 \pi}{2}-4$.
4. 256π
5. (a) $I^{2}=\lim _{R \rightarrow \infty} \int_{0}^{2} \pi \int_{0}^{R} e^{-r^{2}} r d r d \theta$
(b) $I^{2}=\frac{\pi}{4}$, so $I=\frac{\sqrt{\pi}}{2}$

Math 2551 Worksheet Answers: Exam 2 Review

1. All are true except b).
2. -1
3. ± 1
4. Saddle at $(0,0)$ with $f(0,0)=0$, local min at $(0,2)$ of -4 , local max at $(-2,0)$ of 4 , saddle at $(-2,2)$ with $f(-2,2)=0$
5. ($-1 / 2,1 / 2,1 / 2$) and ($0,1,0$)
6. $\sin (4)$
7. No, this is less than $f(x, y)$ at all points, so it cannot possibly be the average value.
8. 1800π cubic feet

Math 2551 Worksheet Answers: Triple Integrals

1. $\frac{-155}{2}$, region of integration the rectangular prism $[0,2] \times[-1,4] \times[0,1]$ or $0 \leq x \leq 2,-1 \leq$
$y \leq z \leq 1$.
2. $\frac{1}{24}$
3. $-\frac{1}{3}$
4.

(a) $\int_{0}^{1} \int_{0}^{1} \int_{-1}^{-\sqrt{z}} d y d z d x$
(b) $\int_{0}^{1} \int_{0}^{1} \int_{-1}^{-\sqrt{z}} d y d x d z$
(c) $\int_{0}^{1} \int_{-1}^{-\sqrt{z}} \int_{0}^{1} d x d y d z$
(d) $\int_{-1}^{0} \int_{0}^{y^{2}} \int_{0}^{1} d x d z d y$
(e) $\int_{-1}^{0} \int_{0}^{1} \int_{0}^{y^{2}} d z d x d y$
5. $\int_{0}^{2} \int_{-\sqrt{1-(y-1)^{2}}}^{\sqrt{1-(y-1)^{2}}} \int_{x^{2}+y^{2}}^{2 y} d z d x d y$

$$
\int_{-1}^{1} \int_{1-\sqrt{1-x^{2}}}^{1+\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2 y} d z d y d x
$$

Math 2551 Worksheet Answers: Mass and Moments

1. $(\bar{x}, \bar{y})=\left(0, \frac{9}{14}\right)$ and $I_{y}=\frac{16}{35}$
2. $(\bar{x}, \bar{y})=\left(-\frac{1}{2}, 0\right)$

Math 2551 Worksheet Answers: Triple Integrals in Cylindrical \& Spherical Coordinates

1. $\frac{2}{5}$.
2. (a) 3π.
(b) $\bar{x}=0$.
3. $\frac{12 \sqrt{3}-4}{3} \pi$.
4. $\frac{a^{3} \pi}{18}$.
5. $\frac{8 \sqrt{2} \pi}{3}$
6. 32π

Math 2551 Worksheet Answers: Change of Variables

1. $\sin ^{2}(\theta)-\cos ^{2}(\theta)=-\cos (2 \theta)$
2. The elliptical region $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$.
3. $x=\sqrt{\frac{u}{v}}, y=\sqrt{u v}$ maps $[1,3] \times[1,3]$ onto R
4. $\int_{0}^{1} \int_{3 v}^{3 v-15}-2 v \frac{1}{5} d u d v$
5. $\ln (9)$
6. $e+\frac{1}{e}$

Math 2551 Worksheet Answers: Scalar Line Integrals

1. There are many possible correct answers! Here are some.
(a) $\mathbf{r}(t)=\langle 3 t,-2 t+1,4 t-2\rangle, \quad 0 \leq t \leq 1$
(b) $\mathbf{r}(t)=\langle-3 t+3,2 t-1,-4 t+2\rangle, \quad 0 \leq t \leq 1$
(c) $\mathbf{r}(t)=\langle 3 \sin (t), 3 \cos (t)\rangle, \quad \pi \leq t \leq 3 \pi$
(d) $\mathbf{r}(t)=\left\langle t^{2},-t\right\rangle \quad-2 \leq t \leq 1$
2. 40π
3. 15
4. $\sqrt{3} \pi$
5. | (x, y) | $(-2,0)$ | $(-1,2)$ | $(0,-2)$ | $(1,1)$ | $(2,3)$ | $(3,2)$ | $(-1,0)$ | $(1,3)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{F}(x, y)$ | $\langle 0,-2\rangle$ | $\langle 2,-1\rangle$ | $\langle-2,0\rangle$ | $\langle 1,1\rangle$ | $\langle 3,2\rangle$ | $\langle 2,3\rangle$ | $\langle 0,-1\rangle$ | $\langle 3,1\rangle$ |

Without rescaling vectors to fit better:
6.

With rescaling:

7. $\nabla f(x, y)=\langle x-y, y-x\rangle$

Math 2551 Worksheet Answers: Vector Line Integrals

1. Top left: 0

Bottom left: Negative
Center: Positive
Top right: 0
Bottom right: Negative
2. 1
3. $\frac{25}{6}$
4. Circulation: $\frac{32}{3}$

Flux: 0
5. Many possible examples: the top left and top right examples from 1), ∇f for any f together with a closed curve \mathbf{r}, any example where $\mathbf{F} \cdot \mathbf{r}^{\prime}(t)=0$, i.e. the field and curve are orthogonal, and more.

Math 2551 Worksheet Answers: Potentials and Conservative Vector Fields

1. $f(x, y)=\arctan (x y)$
2. $f(x, y, z)=x^{2} y-z^{2} y$ and $\int_{C} \mathbf{F} \cdot d \mathbf{r}=-16$.
3. $7=a, 2=c, 4=d$, no restriction on b or e.
4. $f(x, y, z)=x y^{2} z+x^{2} z^{2}$.
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=5$
5. 2π

Math 2551 Worksheet Answers: Curl, Divergence, Green's Theorem

1. $\nabla \cdot \mathbf{F}$ is 0 in all quadrants.
$(\nabla \times \mathbf{F}) \cdot \mathbf{k}$ is negative in all quadrants.
2. $\nabla \cdot \mathbf{F}=0$
$(\nabla \times \mathbf{F}) \cdot \mathbf{k}=-\frac{1}{4}$.
3. (a) $\mathbf{r}(t)=\langle 3 \cos (t), 4 \sin (t)\rangle, 0 \leq t \leq 2 \pi$.
(b) Circulation: 0

Flux: 48π
4. Circulation: $44 / 15$

Flux: The integrand is very difficult to work with, so we should not use Green's theorem here.
5. $-1 / 12$
6. One answer (linear algebra!) $\mathbf{r}(s, t)=s\langle 1,-1,0\rangle+t\langle 0,1,-1\rangle=\langle s, t-s,-t\rangle, s, t \in \mathbb{R}$.

Math 2551 Worksheet Answers: Surfaces

1. One answer: $\mathbf{r}(u, v)=\left\langle u, 4-u^{2}, v\right\rangle,-2 \leq u \leq 2,0 \leq v \leq 2$.
2. One answer: $\mathbf{r}(\phi, \theta)=\langle 2 \sin (\phi) \cos (\theta), 2 \sin (\phi) \sin (\theta), 2 \cos (\phi)\rangle$ with $0 \leq \phi \leq \pi / 6$ and $0 \leq \theta \leq 2 \pi$.
SA: $8 \pi\left(1-\frac{\sqrt{3}}{2}\right)$
3. The tangent plane is $-\sqrt{2}(x-\sqrt{2})-\sqrt{2}(y-\sqrt{2})+2(z-2)=0$. This is the cone $z=\sqrt{x^{2}+y^{2}}$.
4. $\frac{2}{3} \pi\left(2^{3 / 2}-1\right)$
5. $\frac{\pi}{6}\left(5^{3 / 2}-1\right)$

Math 2551 Worksheet Answers: Surface Integrals

1. 0
2. $\frac{10 \pi}{3}$
3. 0

Math 2551 Worksheet Answers: Stokes' Theorem

1. H and P have the same oriented boundary curve C provided that they are oriented in the same way, so by Stokes' theorem the given integrals must be equal.
2. 0
3. 3

Math 2551 Worksheet Answers: Review for Exam 3

1. $\int_{0}^{2 \pi} \int_{2 \pi / 3}^{\pi} \int_{2}^{5} \rho^{4} \cos ^{2}(\phi) \sin (\phi) d \rho d \phi d \theta$
2. (a) $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{4-x^{2}} d z d y d x$
(b) $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{4-x^{2}} d z d y d x$
3. One solution: $\int_{0}^{1} 2(t)\left(-t^{3 / 2}\right)^{2} \sqrt{1+\left(\frac{3}{2} \sqrt{t}\right)^{2}} d t$.
4. $f(x, y, z)=x^{2}-\frac{1}{3} y^{3}-4 \arctan (z)$.

Integral: $-\pi$.
5. $-4 \cdot \pi(2)^{2}$
6. $\pi a^{2} / 4$
7. $\nabla \times \mathbf{F}=\langle 0-0,-(0-0), 0-0\rangle$
8. 12π

Math 2551 Worksheet Answers: Review for Final

1. $3 x+y+z=5$. There is not a unique plane because there is not a unique normal direction perpendicular to $\langle 3,1,1\rangle$.
2. $(0,5,24 \pi)$
3. Domain $\left\{(x, y) \mid y \leq x^{2}\right\}$ Range $[0, \infty)$ Level curves are the parabolas $y=x^{2}-c^{2}$ for all $c \geq 0$.
4. The limit does not exist
5. Tangent plane: $(x-1)+(y-1)-z=0$ Linearization: $L(x, y, z)=1+(x-1)+(y-1)-z$
6. $\nabla f(1,2)=\langle 2,2\rangle, D f_{\mathbf{u}}(1,2)=14 / 5$
7. $-\sin ^{2}(1)-\sin (1) \cos (1)+\cos ^{2}(1)+\cos (1) \cos (2)-2 \cos (1) \sin (2)-2 \sin (1) \sin (2)$
8. $(0,1)$ saddle point, $(2,1),(-2,1)$ local minimum
9. min: -32 at $(2,-2)$ max: 18 at $(1,1)$
10. min: $-1 / 2$ at $(1 / \pm \sqrt{2}, 1 / \pm \sqrt{2})$ and max: $1 / 2$ at $(1 / \pm \sqrt{2}, 1 / \mp \sqrt{2})$.
11. $\int_{-3}^{3} \int_{0}^{\sqrt{9-4 x^{2}}} y d y d x$
12. π
13. $(\bar{x}, \bar{y})=\left(\frac{1}{2-\ln (4)}, \frac{1}{2-\ln (4)}\right)$
14. $V=\frac{\pi}{6}(8 \sqrt{2}-7)$
15. $\frac{64}{5}$
16. 0
17. 3
18. $1-e^{-2 \pi}$
19. $\frac{3}{2}$
20. $\frac{208 \pi}{5}$
