MATH 2551-K MIDTERM 3 VERSION A SPRING 2024 COVERS SECTIONS 15.5-15.8, 16.1-16.8

Full name: _____

GT ID:_____

Honor code statement: I will abide strictly by the Georgia Tech honor code at all times. I will not use a calculator. I will not reference any website, application, or other CAS-enabled service. I will not consult with my notes or anyone during this exam. I will not provide aid to anyone else during this exam.

() I attest to my integrity.

Read all instructions carefully before beginning.

- Print your name and GT ID neatly above.
- You have 75 minutes to take the exam.
- You may not use aids of any kind.
- Please show your work. Answers without work shown will receive little or no credit.
- Good luck! Write yourself a message of encouragement on the front page!

Question	Points
1	2
2	2
3	2
4	6
5	8
6	10
7	10
8	10
Total:	50

For problems 1-3 choose whether each statement is true or false. If the statement is *always* true, pick true. If the statement is *ever* false, pick false. Be sure to neatly fill in the bubble corresponding to your answer choice.

1. (2 points) If \mathbf{F} is the curl of another vector field \mathbf{G} , then the flux of \mathbf{F} out of any closed surface is zero.

 \bigcirc TRUE

- 2. (2 points) If f has continuous partial derivatives on \mathbb{R}^3 and C is any circle, then $\int_C \nabla f \cdot d\mathbf{r} = 0.$
 - \bigcirc TRUE \bigcirc FALSE
- 3. (2 points) Every curl-free vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ is conservative (i.e. if curl \mathbf{F} is the zero vector then $\mathbf{F} = \nabla f$ for some f).

\bigcirc TRUE

- 4. (6 points) Match the volume integrals below to the regions described by filling in the blanks below. You will not use all of the integrals.
 - (A) A cylinder of radius 2 and height $\pi/4$.
 - (B) A cube with side lengths $2, \pi/4$ and 2π .
 - (C) The smaller region between a sphere of radius 2 and a cone making an angle of $\pi/4$ with the positive z-axis.

(I)
$$\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{2} dy \, dx \, dz$$

(II) $\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{2} r \, dr \, dz \, d\theta$.
(III) $\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{2} \rho^{2} \sin(\varphi) \, d\rho \, d\theta \, d\varphi$.
(IV) $\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{2} r \, dz \, dr \, d\theta$.
(V) $\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{2} \rho^{2} \sin(\varphi) \, d\rho \, d\varphi \, d\theta$.

- (A) corresponds to _____
- (B) corresponds to _____
- (C) corresponds to _____

⊖ FALSE

 \bigcirc FALSE

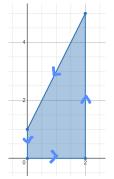
5. (8 points) Let f(x, y, z) = 8xz. Set up but do not evaluate an iterated integral in Cartesian coordinates using any order of integration for $\iiint_D f(x, y, z) \, dV$, where D is the region

$$y^2 \le z \le 8 - 2x^2 - y^2, \qquad x \ge 0$$

A complete answer will include a sketch of the shadow of the region in an appropriate coordinate plane for your chosen direction of integration.

Explain in 1-2 sentences why you chose the order of integration that you did.

- 6. Let C be the boundary curve of the trapezoid with vertices (0,0), (2,0), (0,1), and (2,5), oriented counterclockwise.
 - (a) (2 points) Sketch the curve C.



(b) (8 points) Compute the circulation of a fluid with velocity field

$$\mathbf{F}(x,y) = \langle e^{x^2 + 3x} \cos(7x), \sin(y) + \ln(2x+1) \rangle$$

around C.

- 7. In this problem, you will compute the flux of the vector field $\mathbf{F} = z \langle x, y, 1 \rangle$ across the surface S consisting of the portion of the paraboloid $z = 4 x^2 y^2$ with $z \ge 0$, oriented with normal vectors away from the origin.
 - (a) (3 points) Find a parameterization of S. *Hint: Consider what will make your integration in part (b) simplest.*

(b) (7 points) Write and evaluate an integral expression to compute the flux of \mathbf{F} across S. Fully simplify your answer.

8. (a) (6 points) Let C be the curve composed of the line segment from (0,0) to (1,1) and the line segment from (1,1) to (1,0). Write an integral expression for the average value of $f(x,y) = x + y^2$ on this curve. Do not evaluate your integral expression.

Note that the length of this curve is $1 + \sqrt{2}$ by geometry.

(b) (4 points) Find the flux of the vector field $\mathbf{F}(x, y, z) = \langle 5y, 6x, 2z \rangle$ out of the unit sphere $x^2 + y^2 + z^2 = 1$.

Hint: This surface is closed and the volume of this sphere is $\frac{4}{3}\pi$.

SCRATCH PAPER - PAGE LEFT BLANK

FORMULA SHEET

- Trig identities: $\sin^2(x) = \frac{1}{2}(1 \cos(2x)), \ \cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
- Volume $(D) = \iiint_D dV$, $f_{avg} = \frac{\iiint_D f(x, y, z)dV}{\text{volume of } D}$ or $\frac{\int_C f(x, y, z) ds}{\text{length of } C}$, Mass: $M = \iiint_D \delta dV$
- Cylindrical coordinates: $x = r \cos(\theta)$, $y = r \sin(\theta)$, z = z, $dV = r dz dr d\theta$
- Spherical coordinates: $x = \rho \sin(\phi) \cos(\theta), y = \rho \sin(\phi) \sin(\theta), z = \rho \cos(\phi), dV = \rho^2 \sin(\phi) d\rho d\phi d\theta$
- Substitution for double integrals: If R is the image of G under a coordinate transformation $\mathbf{T}(u, v) = \langle x(u, v), y(u, v) \rangle$ then

$$\iint_R f(x,y) \, dx \, dy = \iint_G f(\mathbf{T}(u,v)) |\det D\mathbf{T}(u,v)| \, du \, dv.$$

• Scalar line integral: $\int_C f(x, y, z) \, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$

- Tangential vector line integral: $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt$
- Normal vector line integral: $\int_C \mathbf{F}(x, y) \cdot \mathbf{n} \, ds = \int_C P \, dy Q \, dx = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \langle y'(t), -x'(t) \rangle \, dt.$
- Fundamental Theorem of Line Integrals: $\int_C \nabla f \cdot d\mathbf{r} = f(B) f(A)$ if C is a path from A to B
- Curl (Mixed Partials) Test: $\mathbf{F} = \nabla f$ if curl $\mathbf{F} = \mathbf{0} \Leftrightarrow P_z = R_x, Q_z = R_y$, and $Q_x = P_y$.
- $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$ div $\mathbf{F} = \nabla \cdot \mathbf{F}$ curl $\mathbf{F} = \nabla \times \mathbf{F}$
- Green's Theorem: If C is a simple closed curve with positive orientation and R is the simply-connected region it encloses, then

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_R (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA \qquad \qquad \int_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R (\nabla \cdot \mathbf{F}) \, dA.$$

- Surface Area= $\iint_S 1 \, d\sigma$
- Scalar surface integral: $\iint_{S} f(x, y, z) \, d\sigma = \iint_{B} f(\mathbf{r}(u, v)) \, |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$
- Flux surface integral: $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iint_S \mathbf{F} \cdot d\boldsymbol{\sigma} = \iint_R \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dA$
- Stokes' Theorem: If S is a piecewise smooth oriented surface bounded by a piecewise smooth curve C and \mathbf{F} is a vector field whose components have continuous partial derivatives on an open region containing S, then

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma$$

• Divergence Theorem: If S is a piecewise smooth closed oriented surface enclosing a volume D and \mathbf{F} is a vector field whose components have continuous partial derivatives on D, then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ d\sigma = \iiint_{D} \nabla \cdot \mathbf{F} \ dV.$$

SCRATCH PAPER - PAGE LEFT BLANK