MATH 2551-K FINAL EXAM

PART 1
VERSION C
FALL 2023
COVERS SECTIONS 12.1-12.6, 13.1-13.4, 14.1

Full name: \qquad GT ID:

Honor code statement: I will abide strictly by the Georgia Tech honor code at all times. I will not use a calculator. I will not reference any website, application, or other CAS-enabled service. I will not consult with my notes or anyone during this exam. I will not provide aid to anyone else during this exam.
() I attest to my integrity and will not discuss this exam with anyone until Friday December 15.

Read all instructions carefully before beginning.

- Print your name and GT ID neatly above.
- You may use any portion of our 2 hours and 50 minute final exam time to work on this portion of the exam.
- When you complete this portion of the exam, you may turn it in and work on another portion of the exam.
- You may not use aids of any kind.
- Please show your work.
- Good luck! Write yourself a message of encouragement on the front page!

Question	Points
1	2
2	2
3	3
4	3
5	10
6	10
7	10
Total:	40

For problems 1-3 choose whether each statement is true or false. If the statement is always true, pick true. If the statement is ever false, pick false. Be sure to neatly fill in the bubble corresponding to your answer choice.

1. (2 points) If \mathbf{u} and \mathbf{v} are unit vectors in \mathbb{R}^{3}, then $|\mathbf{u} \times \mathbf{v}|=1$.TRUE
FALSE
2. (2 points) All surfaces in \mathbb{R}^{3} are quadric surfaces.

TRUE

FALSE

3. (3 points) Level surfaces of the function $f(x, y, z)=\sqrt{x^{2}+z^{2}}$ are:
\bigcirc Circles centered at the origin
\bigcirc Spheres centered at the origin
\bigcirc Upper hemispheres centered at the origin
Cylinders centered around the y-axis
O None of the above
4. (3 points) Which of the following planes is parallel to the plane $y=-2-4 x+3 z$?
$x+y+3 z=1$
$8 x+2 y-6 z=-5$
〇 $4 x+y+3 z=-2$
$42 x+3 z=-2$
\bigcirc None of the above
5. (10 points) Find the length of the portion of the helix $\mathbf{r}(t)=\langle 3 \sin (t), 4 t, 3 \cos (t)\rangle$ between $(0,0,3)$ and $(3,2 \pi, 0)$.
6. (a) (3 points) Find an equation of the plane perpendicular to $\mathbf{n}=\mathbf{j}+\mathbf{k}$ that passes through the point $P=(1,2,3)$.
(b) (3 points) Find an equation of the plane perpendicular to the line $\ell(t)=\langle 3, t-1, t-17\rangle$ that passes through the point $Q=(2,3,4)$.
(c) (4 points) Use your work in parts (a) and (b) to explain why there is no plane with normal vector parallel to $\langle 0,0,1\rangle$ that contains both the points P and Q.
7. Consider the curve parameterized by $\mathbf{r}(t)=\left\langle\sqrt{23} e^{t}, e^{t} \cos (t), e^{t} \sin (t)\right\rangle$ for $t \in \mathbb{R}$.
(a) (5 points) Compute the unit tangent vector $\mathbf{T}(t)$.
(b) (5 points) Compute the curvature $\kappa(t)$.

SCRATCH PAPER - PAGE LEFT BLANK

FORMULA SHEET

- $\left\langle u_{1}, u_{2}, u_{3}\right\rangle \cdot\left\langle v_{1}, v_{2}, v_{3}\right\rangle=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
- $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos (\theta)$
- $\left\langle u_{1}, u_{2}, u_{3}\right\rangle \times\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$
- $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}||\sin (\theta)|$
- $L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$
- $s(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(T)\right| d T$
- $\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{d \mathbf{r}}{d s}$
- $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right|=\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}}$
- $\mathbf{N}=\frac{1}{\kappa} \frac{d \mathbf{T}}{d s}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|}$

SCRATCH PAPER - PAGE LEFT BLANK

MATH 2551-K FINAL EXAM

PART 2
VERSION C
FALL 2023
COVERS SECTIONS 14.2-14.8, 15.1-15.4

Full name: \qquad GT ID: \qquad

Honor code statement: I will abide strictly by the Georgia Tech honor code at all times. I will not use a calculator. I will not reference any website, application, or other CAS-enabled service. I will not consult with my notes or anyone during this exam. I will not provide aid to anyone else during this exam.
() I attest to my integrity and will not discuss this exam with anyone until Friday December 15.

Read all instructions carefully before beginning.

- Print your name and GT ID neatly above.
- You may use any portion of our 2 hours and 50 minute final exam time to work on this portion of the exam.
- When you complete this portion of the exam, you may turn it in and work on another portion of the exam.
- You may not use aids of any kind.
- Please show your work.
- Good luck! Write yourself a message of encouragement on the front page!

Question	Points
1	2
2	2
3	3
4	3
5	10
6	10
7	10
Total:	40

For problems 1-3 choose whether each statement is true or false. If the statement is always true, pick true. If the statement is ever false, pick false. Be sure to neatly fill in the bubble corresponding to your answer choice.

1. (2 points) The total derivative of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{7}$ at the point (a, b, c) is a 2×7 matrix.

TRUE

FALSE
2. (2 points) Any surface that is a graph of a function of two variables $z=f(x, y)$ can be thought of as a level surface of a function of 3 variables.

TRUE

FALSE
3. (3 points) Compute the rate of change of the function $f(x, y, z)=3 x y+z^{2}$ at the point $(3,0,3)$ in the direction of $\langle 2,1,2\rangle$.

5
$\bigcirc 7$
$\bigcirc 15$
$\bigcirc 21$
\bigcirc None of the above.
4. (3 points) Find the linearization of the function $f(x, y)=\sqrt{x^{2}+y}$ at the point $(2,5)$.
$L(x, y)=3+\frac{2}{3}(x-2)+\frac{1}{6}(y-5)$
$L(x, y)=\frac{2}{3}(x-2)+\frac{1}{6}(y-5)$
$L(x, y)=\frac{1}{6}(x-2)+\frac{1}{6}(y-5)$
$L(x, y)=3+\frac{x}{\sqrt{x^{2}+y}}(x-2)+\frac{1}{2 \sqrt{x^{2}+y}}(y-5)$
\bigcirc None of the above.
5. (10 points) Find and classify the critical points of the function $f(x, y)=3 x^{3}+3 x y+3 y^{3}$.
6. For each limit below, either compute its value or show that it does not exist.
(a) (2 points) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+3 y^{4}+1}$
(b) (4 points) $\lim _{(x, y) \rightarrow(0,0)} x \frac{x^{2} y^{2}}{x^{2}+3 y^{4}}$

Hint: This limit exists. Try converting to polar coordinates and taking the limit as $r \rightarrow 0$
(c) (4 points) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+3 y^{4}}$
7. (10 points) The region R bounded by $y=e^{x}-1, y=2$, and $y=x / 2$ is shown to the right. Write an iterated integral or sum of iterated integrals for the double integral $\iint_{R} e^{x} d A$, using either order of integration, then compute your integral. Fully simplify your answer.

SCRATCH PAPER - PAGE LEFT BLANK

FORMULA SHEET

- Total Derivative: For $\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=$ $\left\langle f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right\rangle$

$$
D \mathbf{f}=\left[\begin{array}{cccc}
\left(f_{1}\right)_{x_{1}} & \left(f_{1}\right)_{x_{2}} & \ldots & \left(f_{1}\right)_{x_{n}} \\
\left(f_{2}\right)_{x_{1}} & \left(f_{2}\right)_{x_{2}} & \ldots & \left(f_{2}\right)_{x_{n}} \\
\vdots & \ddots & \ldots & \vdots \\
\left(f_{m}\right)_{x_{1}} & \left(f_{m}\right)_{x_{2}} & \cdots & \left(f_{m}\right)_{x_{n}}
\end{array}\right]
$$

- Linearization: Near $\mathbf{a}, L(\mathbf{x})=f(\mathbf{a})+D f(\mathbf{a})(\mathbf{x}-\mathbf{a})$
- Chain Rule: If $h=g(f(\mathbf{x}))$ then $\operatorname{Dh}(\mathbf{x})=D g(f(\mathbf{x})) D f(\mathbf{x})$
- Implicit Differentiation: $\frac{\partial z}{\partial x}=\frac{-F_{x}}{F_{z}}$ and $\frac{\partial z}{\partial y}=\frac{-F_{y}}{F_{z}}$.
- Directional Derivative: If \mathbf{u} is a unit vector, $D_{\mathbf{u}} f(P)=D f(P) \mathbf{u}=\nabla f(P) \cdot \mathbf{u}$
- The tangent line to a level curve of $f(x, y)$ at (a, b) is $0=\nabla f(a, b) \cdot\langle x-a, y-b\rangle$
- The tangent plane to a level surface of $f(x, y, z)$ at (a, b, c) is

$$
0=\nabla f(a, b, c) \cdot\langle x-a, y-b, z-c\rangle
$$

- Hessian Matrix: For $f(x, y), H f(x, y)=\left[\begin{array}{ll}f_{x x} & f_{y x} \\ f_{x y} & f_{y y}\end{array}\right]$
- Second Derivative Test: If (a, b) is a critical point of $f(x, y)$ then

1. If $\operatorname{det}(H f(a, b))>0$ and $f_{x x}(a, b)<0$ then f has a local maximum at (a, b)
2. If $\operatorname{det}(H f(a, b))>0$ and $f_{x x}(a, b)>0$ then f has a local minimum at (a, b)
3. If $\operatorname{det}(H f(a, b))<0$ then f has a saddle point at (a, b)
4. If $\operatorname{det}(H f(a, b))=0$ the test is inconclusive

- Area/volume: $\operatorname{area}(R)=\iint_{R} d A, \quad \operatorname{volume}(D)=\iiint_{D} d V$
- Trig identities: $\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x)), \quad \cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x))$
- Average value: $f_{\text {avg }}=\frac{\iint_{R} f(x, y) d A}{\text { area of } R}$
- Polar coordinates: $x=r \cos (\theta), \quad y=r \sin (\theta), \quad d A=r d r d \theta$

SCRATCH PAPER - PAGE LEFT BLANK

MATH 2551-K FINAL EXAM

PART 3
VERSION C
FALL 2023
COVERS SECTIONS 15.1-15.8, 16.1-16.8

Full name: \qquad GT ID: \qquad

Honor code statement: I will abide strictly by the Georgia Tech honor code at all times. I will not use a calculator. I will not reference any website, application, or other CAS-enabled service. I will not consult with my notes or anyone during this exam. I will not provide aid to anyone else during this exam.
() I attest to my integrity and will not discuss this exam with anyone until Friday December 15.

Read all instructions carefully before beginning.

- Print your name and GT ID neatly above.
- You may use any portion of our 2 hours and 50 minute final exam time to work on this portion of the exam.
- When you complete this portion of the exam, you may turn it in and work on another portion of the exam.
- You may not use aids of any kind.
- Please show your work.
- Good luck! Write yourself a message of encouragement on the front page!

Question	Points
1	2
2	2
3	3
4	3
5	14
6	8
7	8
Total:	40

For problems 1-3 choose whether each statement is true or false. If the statement is always true, pick true. If the statement is ever false, pick false. Be sure to neatly fill in the bubble corresponding to your answer choice.

1. (2 points) Every smooth vector field $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is conservative.

TRUE

2. (2 points) If $\nabla \cdot \mathbf{F}=0$ and $\nabla \times \mathbf{F}=\mathbf{0}$, then $\mathbf{F}=\mathbf{0}$.

TRUE

○ FALSE
3. (3 points) Let $\mathbf{F}(x, y)=\langle 2023 y,-2023 x\rangle$ and C be a simple closed curve surrounding the origin with positive orientation. Which of the theorems below would be appropriate to use to compute the flow of \mathbf{F} along C ?
\bigcirc Fundamental Theorem of Line Integrals
\bigcirc Green's Theorem (circulation)
Green's Theorem (flux)
O Stokes' Theorem
\bigcirc Divergence Theorem
4. (3 points) Let $\mathbf{F}(x, y, z)=\langle 4 x,-4 y, 4 z\rangle$ and S be the surface which is the part of the cylinder $x^{2}+z^{2}=4$ between $y=2023$ and $y=2024$, oriented away from the y-axis. \mathbf{F} is the curl of a vector field \mathbf{G}. Which of the theorems below would be appropriate to use to compute the flux of \mathbf{F} across S ?
\bigcirc Fundamental Theorem of Line Integrals
\bigcirc Green's Theorem (circulation)
Green's Theorem (flux)
\bigcirc Stokes' Theorem
\bigcirc Divergence Theorem
5. (14 points) Let $\mathbf{F}(x, y)=\left\langle 2 y-3 x^{2}, 3\right\rangle$ and $\mathbf{G}(x, y)=\left\langle y^{2} e^{x y},(1+x y) e^{x y}\right\rangle$. In this problem you will work with these vector fields and the curve C that is the portion of the parabola $y=9-x^{2}$ starting at $(-3,0)$ and ending at $(1,8)$.
(a) Is \mathbf{F} conservative? If so, find a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ so that $\mathbf{F}=\nabla f$.
(b) Is \mathbf{G} conservative? If so, find a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ so that $\mathbf{G}=\nabla g$.
(c) Compute the work done by \mathbf{F} along the curve C. Fully simplify your answer.
(d) Compute the work done by \mathbf{G} along the curve C. Fully simplify your answer.

6 . Let D be the sphere of radius 3 centered at the origin in \mathbb{R}^{3}. The volume of this sphere is 36π. Suppose that the density of a liquid filling this sphere is $\delta(x, y, z)=5 y^{2}$ kilograms per cubic meter.
(a) (4 points) Write an integral expression for the mass of this sphere filled with liquid. Do not evaluate your integral expression.
(b) (4 points) Write an integral expression for the average distance of a point in this sphere from the origin. Do not evaluate your integral expression.
7. Consider the volume D bounded by the planes $x=0, x=2, z=-y$ and the surface $z=y^{2} / 2$.
(a) (4 points) Write an integral for the volume of D using Cartesian coordinates in the order $d z d y d x$. Show your work, including a sketch of the shadow of the region. Do not evaluate your integral.

(b) (4 points) Write an integral for the volume of D using Cartesian coordinates in the order $d x d y d z$. Show your work, including a sketch of the shadow of the region. Do not evaluate your integral.

SCRATCH PAPER - PAGE LEFT BLANK

FORMULA SHEET

- Trig identities: $\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x)), \cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x))$
- Volume $(D)=\iiint_{D} d V, \quad f_{\text {avg }}=\frac{\iiint_{D} f(x, y, z) d V}{\text { volume of } D}, \quad$ Mass: $M=\iiint_{D} \delta d V$
- Cylindrical coordinates: $x=r \cos (\theta), \quad y=r \sin (\theta), z=z, d V=r d z d r d \theta$
- Spherical coordinates: $x=\rho \sin (\phi) \cos (\theta), y=\rho \sin (\phi) \sin (\theta), z=\rho \cos (\phi)$, $d V=\rho^{2} \sin (\phi) d \rho d \phi d \theta$
- First moments (3D solid): $M_{y z}=\iiint_{D} x \delta d V, M_{x z}=\iiint_{D} y \delta d V, M_{x y}=\iiint_{D} z \delta d V$
- Center of mass (3D solid): $(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{y z}}{M}, \frac{M_{x z}}{M}, \frac{M_{x y}}{M}\right)$
- Substitution for double integrals: If R is the image of G under a coordinate transformation $\mathbf{T}(u, v)=\langle x(u, v), y(u, v)\rangle$ then

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(\mathbf{T}(u, v))|\operatorname{det} D \mathbf{T}(u, v)| d u d v
$$

- Scalar line integral: $\int_{C} f(x, y, z) d s=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t$
- Tangential vector line integral: $\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t$
- Normal vector line integral: $\int_{C} \mathbf{F}(x, y) \cdot \mathbf{n} d s=\int_{C} P d y-Q d x=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t))$. $\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle d t$.
- Fundamental Theorem of Line Integrals: $\int_{C} \nabla f \cdot d \mathbf{r}=f(B)-f(A)$ if C is a path from A to B
- Curl (Mixed Partials) Test: $\mathbf{F}=\nabla f$ if $\operatorname{curl} \mathbf{F}=\mathbf{0} \Leftrightarrow P_{z}=R_{x}, Q_{z}=R_{y}$, and $Q_{x}=P_{y}$.
- $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \quad \operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F} \quad \operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}$
- Green's Theorem: If C is a simple closed curve with positive orientation and R is the simply-connected region it encloses, then

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{R}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A \quad \int_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}(\nabla \cdot \mathbf{F}) d A
$$

- Surface Area $=\iint_{S} 1 d \sigma$
- Scalar surface integral: $\iint_{S} f(x, y, z) d \sigma=\iint_{R} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$
- Flux surface integral: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{S} \mathbf{F} \cdot d \boldsymbol{\sigma}=\iint_{R} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A$
- Stokes' Theorem: If S is a piecewise smooth oriented surface bounded by a piecewise smooth curve C and \mathbf{F} is a vector field whose components have continuous partial derivatives on an open region containing S, then

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

- Divergence Theorem: If S is a piecewise smooth closed oriented surface enclosing a volume D and \mathbf{F} is a vector field whose components have continuous partial derivatives on D, then

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

SCRATCH PAPER - PAGE LEFT BLANK

