MATH 2551-K MIDTERM 3
 VERSION A
 FALL 2023
 COVERS SECTIONS 15.5-15.8, 16.1-16.8

Full name: \qquad

GT ID: \qquad

Honor code statement: I will abide strictly by the Georgia Tech honor code at all times. I will not use a calculator. I will not reference any website, application, or other CAS-enabled service. I will not consult with my notes or anyone during this exam. I will not provide aid to anyone else during this exam.
() I attest to my integrity.

Read all instructions carefully before beginning.

- Print your name and GT ID neatly above.
- You have 75 minutes to take the exam.
- You may not use aids of any kind.
- Please show your work.
- Good luck! Write yourself a message of encouragement on the front page!

Question	Points
1	2
2	2
3	2
4	4
5	8
6	12
7	8
8	12
Total:	50

For problems 1-3 choose whether each statement is true or false. If the statement is always true, pick true. If the statement is ever false, pick false. Be sure to neatly fill in the bubble corresponding to your answer choice.

1. (2 points) Suppose $\mathbf{F}(x, y)$ is a curl-free vector field $(\nabla \times \mathbf{F}=\mathbf{0})$ defined in all of \mathbb{R}^{2} except $(0,0)$. Then \mathbf{F} is conservative.

TRUE
FALSE
2. (2 points) There exists a non-constant vector field $\mathbf{F}(x, y)$ with both $\nabla \cdot \mathbf{F}=0$ and $\nabla \times \mathbf{F}=\mathbf{0}$.

TRUE

FALSE
3. (2 points) If \mathbf{F} is any vector field and C is a circle, then the circulation of \mathbf{F} around C traversed clockwise is the negative of the circulation of \mathbf{F} around C traversed counterclockwise.

\bigcirc TRUE

FALSE
4. (4 points) Consider the double integral

$$
\iint_{R} \frac{2 x-y}{3 y-x} d A
$$

where R is the region bounded by the lines $2 x-y=0,2 x-y=4,3 y-x=0,3 y-x=2$. Which of the following coordinate transformations would be appropriate to use for change of variables on this integral?

$$
\begin{aligned}
u & =\frac{y}{x} \\
v & =\frac{x}{3 y} \\
x & =u \\
y & =v \\
u & =2 x-y \\
v & =3 y-x \\
x & =2 u-v \\
y & =3 v-y
\end{aligned}
$$

5. (8 points) Compute the flux of the vector field $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}$ through the open-ended circular cylinder of radius 4 and height 7 with its base on the $x y$-plane and centerered about the z-axis, oriented away from the z-axis.
6. In this problem, you will work with the path C which is the ellipse $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{5^{2}}=1$ oriented counterclockwise.
(a) (3 points) Give a parameterization $\mathbf{r}(t)$ of the ellipse.
(b) (4 points) Use any method to find the flux of the vector field $\mathbf{F}=\left\langle e^{y}, 2 \cos (x)\right\rangle$ out of the interior of C.
(c) (5 points) Use any method to find the circulation of the vector field $\mathbf{G}=\langle 2 y, x\rangle$ around C.
7. Let \mathbf{F} be the vector field

$$
\mathbf{F}(x, y, z)=\left\langle 3 x+e^{z^{2} y}, y+z, \arctan (x)-z\right\rangle .
$$

(a) (6 points) Let S be the surface defined by

$$
\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{6}\right)^{2}+\left(\frac{z}{2}\right)^{2}=1
$$

oriented with outward pointing normal vectors. Compute the flux of \mathbf{F} across S.

Hint: The volume of the ellipsoid $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2} \leq 1$ is $\frac{4}{3} \pi a b c$.
(b) (2 points) Is there a vector field \mathbf{G} such that $\mathbf{F}=\nabla \times \mathbf{G}$? Explain your answer.
8. Consider the volume D in the second octant of $\mathbb{R}^{3}(x \leq 0, y \geq 0, z \geq 0)$ which is bounded above by the sphere $x^{2}+y^{2}+z^{2}=2$ and below by the paraboloid $z=x^{2}+y^{2}$.
(a) (4 points) Write an integral for the volume of D using Cartesian coordinates in the order $d z d y d x$. Show your work. Do not evaluate your integral.
(b) (4 points) Write an integral for the volume of D using cylindrical coordinates. Show your work. Do not evaluate your integral.

Consider the volume D in the second octant $(x \leq 0, y \geq 0, z \geq 0)$ of \mathbb{R}^{3} which is bounded above by the sphere $x^{2}+y^{2}+z^{2}=2$ and below by the paraboloid $z=x^{2}+y^{2}$.
(c) (2 points) Sketch the shadow of D in the $y z$-plane.
(d) (2 points) Are spherical coordinates a good choice to use to compute this volume? Justify your answer.

SCRATCH PAPER - PAGE LEFT BLANK

FORMULA SHEET

- Trig identities: $\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x)), \cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x))$
- Volume $(D)=\iiint_{D} d V, \quad f_{\text {avg }}=\frac{\iiint_{D} f(x, y, z) d V}{\text { volume of } D}, \quad$ Mass: $M=\iiint_{D} \delta d V$
- Cylindrical coordinates: $x=r \cos (\theta), \quad y=r \sin (\theta), z=z, d V=r d z d r d \theta$
- Spherical coordinates: $x=\rho \sin (\phi) \cos (\theta), y=\rho \sin (\phi) \sin (\theta), z=\rho \cos (\phi)$, $d V=\rho^{2} \sin (\phi) d \rho d \phi d \theta$
- First moments (3D solid): $M_{y z}=\iiint_{D} x \delta d V, M_{x z}=\iiint_{D} y \delta d V, M_{x y}=\iiint_{D} z \delta d V$
- Center of mass (3D solid): $(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{y z}}{M}, \frac{M_{x z}}{M}, \frac{M_{x y}}{M}\right)$
- Substitution for double integrals: If R is the image of G under a coordinate transformation $\mathbf{T}(u, v)=\langle x(u, v), y(u, v)\rangle$ then

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(\mathbf{T}(u, v))|\operatorname{det} D \mathbf{T}(u, v)| d u d v
$$

- Scalar line integral: $\int_{C} f(x, y, z) d s=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t$
- Tangential vector line integral: $\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t$
- Normal vector line integral: $\int_{C} \mathbf{F}(x, y) \cdot \mathbf{n} d s=\int_{C} P d y-Q d x=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t))$. $\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle d t$.
- Fundamental Theorem of Line Integrals: $\int_{C} \nabla f \cdot d \mathbf{r}=f(B)-f(A)$ if C is a path from A to B
- Curl (Mixed Partials) Test: $\mathbf{F}=\nabla f$ if $\operatorname{curl} \mathbf{F}=\mathbf{0} \Leftrightarrow P_{z}=R_{x}, Q_{z}=R_{y}$, and $Q_{x}=P_{y}$.
- $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \quad \operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F} \quad \operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}$
- Green's Theorem: If C is a simple closed curve with positive orientation and R is the simply-connected region it encloses, then

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{R}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A \quad \int_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}(\nabla \cdot \mathbf{F}) d A
$$

- Surface Area $=\iint_{S} 1 d \sigma$
- Scalar surface integral: $\iint_{S} f(x, y, z) d \sigma=\iint_{R} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$
- Flux surface integral: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{S} \mathbf{F} \cdot d \boldsymbol{\sigma}=\iint_{R} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A$
- Stokes' Theorem: If S is a piecewise smooth oriented surface bounded by a piecewise smooth curve C and \mathbf{F} is a vector field whose components have continuous partial derivatives on an open region containing S, then

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

- Divergence Theorem: If S is a piecewise smooth closed oriented surface enclosing a volume D and \mathbf{F} is a vector field whose components have continuous partial derivatives on D, then

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

SCRATCH PAPER - PAGE LEFT BLANK

