MATH 2551-K MIDTERM 1
 VERSION A
 FALL 2023
 COVERS SECTIONS 12.1-12.6, 13.1-13.4, 14.1

Full name: \qquad

GT ID: \qquad

Honor code statement: I will abide strictly by the Georgia Tech honor code at all times. I will not use a calculator. I will not reference any website, application, or other CAS-enabled service. I will not consult with my notes or anyone during this exam. I will not provide aid to anyone else during this exam.
() I attest to my integrity.

Read all instructions carefully before beginning.

- Print your name and GT ID neatly above.
- You have 75 minutes to take the exam.
- You may not use aids of any kind.
- Please show your work.
- Good luck! Write yourself a message of encouragement on the front page!

Question	Points
1	2
2	2
3	2
4	4
5	10
6	10
7	10
8	10
Total:	50

For problems 1-2 choose whether each statement is true or false. If the statement is always true, pick true. If the statement is ever false, pick false. Be sure to neatly fill in the bubble corresponding to your answer choice.

1. (2 points) Any plane has only two distinct normal vectors.

TRUE

$\sqrt{ }$ FALSE
2. (2 points) If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{3}, then $\mathbf{u} \times \mathbf{v}+\mathbf{v} \times \mathbf{u}=0$.

```
\sqrt{}{*RUE}
```

○ FALSE
3. (2 points) Order the following curves in increasing order of curvature.
A) A helix of curvature 2
B) A line segment of length 10
C) A circle of radius 20

Solution: $B<C<A$
4. (4 points) Which of the following vectors could be the principal unit normal vector at time $t=2$ to a curve whose tangent line at $t=2$ is given by

$$
\ell(p)=\langle 1,0,-1\rangle+p\langle 1,2,1\rangle .
$$

You must justify your answer to receive full credit.
A) $\langle 1,1,1\rangle$
B) $\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$
C) $\langle-2,1,0\rangle$
D) $\left\langle\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right\rangle$

Solution: The correct answer is D). Only B) and D) are unit vectors, and only D) is normal to the curve, since the dot product between it and the tangent vector $\langle 1,2,1\rangle$ at $t=2$ is 0 , while the dot product with B is non-zero.
5. (10 points) Tobert, a hard-working documentarian, is hiking through the African savannah for two days and his path is given by the curve $\mathbf{r}(t)=\left\langle t^{2}, \frac{1}{3} t^{3}, 2\right\rangle$ for $0 \leq t<48$, where t is measured in hours and $\mathbf{r}(t)$ in meters.
(a) What is Tobert's position two hours into his hike?

Solution: $\mathbf{r}(2)=\langle 4,8 / 3,2\rangle$
(b) Find a function $s(t)$ that gives the total distance Tobert has hiked for any time t since he started at $t=0$.

Solution:

$$
\begin{aligned}
s(t) & =\int_{0}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau \\
& =\int_{0}^{t}\left|\left\langle 2 \tau, \tau^{2}, 0\right\rangle\right| d \tau \\
& =\int_{0}^{t} \sqrt{4 \tau^{2}+\tau^{4}+0} d \tau \\
& =\int_{0}^{t} \tau \sqrt{4+\tau^{2}} d \tau
\end{aligned}
$$

Let $u=4+\tau^{2}, d u=2 \tau d \tau$. Then we have

$$
\begin{aligned}
s(t) & =\int_{4}^{4+t^{2}} \frac{1}{2} \sqrt{u} d u \\
& =\left.\frac{1}{3} u^{3 / 2}\right|_{4} ^{4+t^{2}} \\
& =\frac{\left(4+t^{2}\right)^{3 / 2}-8}{3}
\end{aligned}
$$

(c) How far has Tobert hiked when he is at the point $(4,8 / 3,2)$?

Solution: From a) and b), this is just $s(2)$.

$$
s(2)=\frac{8^{3 / 2}-8}{3}=\frac{8}{3}(2 \sqrt{2}-1)
$$

6. In this problem, you will work with the differential equation

$$
\mathbf{r}^{\prime \prime}(t)=3 \mathbf{i}+e^{t} \mathbf{j}+49 e^{7 t} \mathbf{k}, \quad-\infty<t<\infty
$$

(a) (6 points) Find all vector-valued functions $\mathbf{r}(t)$ with $-\infty<t<\infty$ which are solutions to this equation.
Hint: Your answer to this part should include some undetermined constant vectors.
Solution: From the differential equation we get (via integration with respect to t):

$$
\begin{align*}
\mathbf{r}^{\prime}(t) & =3 t \mathbf{i}+e^{t} \mathbf{j}+7 e^{7 t} \mathbf{k}+\mathbf{C}_{\mathbf{1}} \tag{1}\\
\mathbf{r}(t) & =\frac{3}{2} t^{2} \mathbf{i}+e^{t} \mathbf{j}+e^{7 t} \mathbf{k}+\mathbf{C}_{\mathbf{1}} t+\mathbf{C}_{\mathbf{2}} \tag{2}
\end{align*}
$$

where $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ are constant vectors.
(b) (2 points) Find all vector-valued functions $\mathbf{r}(t)$ with $-\infty<t<\infty$ which are solutions to this equation and also have the property that $\mathbf{r}^{\prime}(0)=3 \mathbf{j}+7 \mathbf{k}$.

Solution: Applying this condition to equation (1) gives

$$
3 \mathbf{j}+7 \mathbf{k}=\mathbf{r}^{\prime}(0)=\mathbf{j}+7 \mathbf{k}+\mathbf{C}_{\mathbf{1}} .
$$

So we have $\mathbf{C}_{\mathbf{1}}=2 \mathbf{j}$ and thus

$$
\begin{equation*}
\mathbf{r}(t)=\frac{3}{2} t^{2} \mathbf{i}+\left(e^{t}+2 t\right) \mathbf{j}+e^{7 t} \mathbf{k}+\mathbf{C}_{\mathbf{2}} \tag{3}
\end{equation*}
$$

(c) (2 points) Find all vector-valued functions $\mathbf{r}(t)$ with $-\infty<t<\infty$ which are solutions to this equation, have the property that $\mathbf{r}^{\prime}(0)=3 \mathbf{j}+7 \mathbf{k}$ and also have the property that $\mathbf{r}(0)=\langle 1,1,5\rangle$.

Solution: Applying the new condition to equation (3) gives

$$
\langle 1,1,5\rangle=\mathbf{r}(0)=\langle 0,1,1\rangle+\mathbf{C}_{\mathbf{2}} .
$$

So we have $\mathbf{C}_{\mathbf{2}}=\langle 1,0,4\rangle$ and thus

$$
\mathbf{r}(t)=\left(\frac{3}{2} t^{2}+1\right) \mathbf{i}+\left(e^{t}+2 t\right) \mathbf{j}+\left(e^{7 t}+4\right) \mathbf{k}
$$

7. Let p_{1} be the plane defined by the equation $2 x-3 y+z=-10$ and let Q be the point $(3,1,1)$.
(a) (2 points) Find an equation for the plane p_{2} which contains the point Q and is parallel to p_{1}.

Solution: The normal vector to p_{2} needs to be parallel to the normal vector of p_{1}, so we can take the same vector. Since the plane must contain Q, we use that as the reference point:

$$
2(x-3)-3(y-1)+(z-1)=0 \quad \text { or } \quad 2 x-3 y+z=4 .
$$

(b) (2 points) Find an equation for the line ℓ which passes through Q and is orthogonal to both planes.

Solution: Since ℓ is orthogonal to both planes, its direction vector is parallel to the normal of both planes, so we again take the same vector and use Q as our reference point.

$$
\ell(t)=\langle 2,-3,1\rangle t+\langle 3,1,1\rangle .
$$

(c) (3 points) Find the point R where the line ℓ intersects the plane p_{1}.

Solution: To find R, we plug the line equation into the plane equation.

$$
\begin{aligned}
2(2 t+3)-3(-3 t+1)+(t+1) & =-10 \\
4 t+6+9 t-3+t+1 & =-10 \\
14 t & =-14 \\
t & =-1
\end{aligned}
$$

So R is $\ell(-1)=\langle 1,4,0\rangle$.
(d) (3 points) Compute the distance between the two planes using your work in parts (a)-(c) above.

Solution: The distance between the two planes is the length of any line segment orthogonal to both planes. Thus the segment of ℓ between Q and R gives the distance:

$$
|\overrightarrow{Q R}|=\sqrt{(3-1)^{2}+(1-4)^{2}+(1-0)^{2}}=\sqrt{4+9+1}=\sqrt{14} .
$$

8. (a) (4 points) Find and sketch the domain of the function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$. Show your work and label your axes clearly.

Solution: We need $4-x^{2}-y^{2} \geq 0$, so the domain is all (x, y) inside or on the
circle $x^{2}+y^{2}=4$.

(b) (6 points) Match the contour plots and graphs below with the given functions of two variables.

Function Graph Contour Plot

$$
\begin{gathered}
f(x, y)=\cos \left(\sqrt{x^{2}+y^{2}}\right) \\
g(x, y)=x^{2}-y^{2} \\
h(x, y)=x^{2}+2 y^{2}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad

\qquad

A

C

D

F

G

H

I

J

Solution: f : Graph D , Contour Plot C.
g : Graph H, Contour Plot A.
h : Graph J, Contour Plot G.

SCRATCH PAPER - PAGE LEFT BLANK

FORMULA SHEET

- $\left\langle u_{1}, u_{2}, u_{3}\right\rangle \cdot\left\langle v_{1}, v_{2}, v_{3}\right\rangle=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
- $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos (\theta)$
- $\left\langle u_{1}, u_{2}, u_{3}\right\rangle \times\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$
- $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}||\sin (\theta)|$
- $L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$
- $s(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(T)\right| d T$
- $\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{d \mathbf{r}}{d s}$
- $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right|=\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}}$
- $\mathbf{N}=\frac{1}{\kappa} \frac{d \mathbf{T}}{d s}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|}$

SCRATCH PAPER - PAGE LEFT BLANK

