# MATH 2551-D MIDTERM 2 <br> VERSION A <br> SPRING 2023 <br> COVERS SECTIONS 14.1-14.8 

Full name: $\qquad$

GT ID: $\qquad$

Honor code statement: I will abide strictly by the Georgia Tech honor code at all times. I will not use a calculator. I will not reference any website, application, or other CAS-enabled service. I will not consult with my notes or anyone during this exam. I will not provide aid to anyone else during this exam.
( ) I attest to my integrity.

Read all instructions carefully before beginning.

- Print your name and GT ID neatly above.
- You have 75 minutes to take the exam.
- You may not use aids of any kind.
- Please show your work.
- Good luck! Write yourself a message of encouragement on the front page!

| Question | Points |
| :---: | :---: |
| 1 | 2 |
| 2 | 2 |
| 3 | 2 |
| 4 | 3 |
| 5 | 9 |
| 6 | 8 |
| 7 | 7 |
| 8 | 7 |
| 9 | 10 |
| Total: | 50 |

For problems 1-3 choose whether each statement is true or false. If the statement is always true, pick true. If the statement is ever false, pick false. Be sure to neatly fill in the bubble corresponding to your answer choice.

1. (2 points) The domain of the function $f(x, y, z)=\frac{1}{x-2}+y z^{2}$ is $(-\infty, 2) \cup(2, \infty)$.TRUE $\sqrt{ }$ FALSE
2. (2 points) There does not exist a function $f(x, y)$ which is continuous and has continuous partial derivatives such that $f_{x}(x, y)=x^{2}+2 x y$ and $f_{y}(x, y)=3 x y+y^{2}$. $\sqrt{ }$ TRUE

○ FALSE
3. (2 points) A function of two variables is differentiable at the point $(a, b)$ if the surface $z=f(x, y)$ has a unique tangent plane at the point $(a, b, f(a, b))$.

## $\sqrt{ }$ TRUE

O FALSE
4. (3 points) Which of the following is NOT a valid approach to finding the extreme values of the function $f(x, y)=3 x^{2}-y^{2}+4$ on the unit disk $x^{2}+y^{2} \leq 1$ ?A) Find all critical points of $f$ inside the disk, use the formula $x^{2}+y^{2}=1$ to rewrite $f$ as function of only $x$ and use this to find the critical points of $f$ on the boundary, check for endpoints, and then evaluate $f$ at all the points you found.
$\bigcirc$ B) Find all critical points of $f$ inside the disk, use the formula $x^{2}+y^{2}=1$ to rewrite $f$ as function of only $y$ and use this to find the critical points of $f$ on the boundary, check for endpoints, and then evaluate $f$ at all the points you found.
$\bigcirc$ C) Find all critical points of $f$ inside the disk, parameterize the unit circle to rewrite $f$ as function of only $t$ and use this to find the critical points of $f$ on the boundary, check for endpoints, and then evaluate $f$ at all the points you found.
$\bigcirc$ D) Find all critical points of $f$ inside the disk, use Lagrange multipliers with the constraint $g(x, y)=1-x^{2}-y^{2}=0$ to find possible extreme points on the boundary, check for endpoints, and then evaluate $f$ at all the points you found.
$\sqrt{ }$ E) None of the above.
5. (a) (4 points) By considering the paths $x=0$ and $x=y^{4}$, show that the following limit does not exist. Your final answer should be a sentence that includes the test you are using.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}}
$$

Solution: Along $x=0$, the limit becomes

$$
\lim _{y \rightarrow 0} \frac{(0) y^{4}}{0+y^{8}}=\lim _{y \rightarrow 0} 0=0 .
$$

On the other hand, along $x=y^{4}$, the limit becomes

$$
\lim _{y \rightarrow 0} \frac{\left(y^{4} y^{4}\right.}{\left(y^{4}\right)^{2}+y^{8}}=\lim _{y \rightarrow 0} \frac{1}{2}=\frac{1}{2} .
$$

Since these values are different, the two-path test says that this limit does not exist.
(b) (5 points) Let $w=x z+y^{2}$, with $x=3 s-t, y=s^{2}$, and $z=4 s t$. Use the Chain Rule, either via total derivatives or a tree diagram, to compute the partial derivatives $\frac{\partial w}{\partial s}(1,1)$ and $\frac{\partial w}{\partial t}(1,1)$.

Solution: The total derivative of $w(x, y, z)$ is

$$
D w(x, y, z)=\left[\begin{array}{ccc}
z & 2 y & x
\end{array}\right] .
$$

The total derivative of $\mathbf{r}(s, t)=\langle x(s, t), y(s, t), z(s, t)\rangle$ is

$$
D \mathbf{r}(s, t)=\left[\begin{array}{cc}
3 & -1 \\
2 s & 0 \\
4 t & 4 s
\end{array}\right]
$$

At $(s, t)=(1,1),(x, y, z)=(2,1,4)$. The Chain Rule then tells us

$$
\left[\frac{\partial w}{\partial s}(1,1) \frac{\partial w}{\partial t}(1,1)\right]=D w(2,1,4) D \mathbf{r}(1,1)=\left[\begin{array}{lll}
4 & 2 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
2 & 0 \\
4 & 4
\end{array}\right]=\left[\begin{array}{cc}
24 & 4
\end{array}\right] .
$$

6. Suppose you are on a landscape whose elevation can be modeled by the function $f(x, y)=$ $e^{x y}-x y^{2}$, and you are standing at the point where $(x, y)=(1,2)$.
(a) (3 points) Find the rate of change of your elevation if you were to walk north (positive $y$-direction) or east (positive $x$-direction).

Solution: The rate of change if we walk east is $f_{x}(1,2)$ and the rate of change is we walk north is $f_{y}(1,2)$.
$f_{x}=y e^{x y}-y^{2}$ and $f_{y}=x e^{x y}-2 x y$, so the rate of change walking east is $2 e^{2}-4$ and the rate of change walking north is $e^{2}-4$.
(b) (3 points) Find the rate of change of your elevation if you were to walk in the direction 3 units east and 4 unit south.

Solution: The unit vector in this direction is $\mathbf{u}=\frac{\langle 3,-4\rangle}{|\langle 3,-4\rangle|}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle$.
The rate of change of elevation in this direction is the directional derivative

$$
D_{\mathbf{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\left\langle 2 e^{2}-4, e^{2}-4\right\rangle \cdot\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle=\frac{2}{5} e^{2}+\frac{4}{5} .
$$

(c) (2 points) What is the relationship between the direction of maximum decrease of elevation from $(1,2)$ and the contour line of $f$ passing through $(1,2)$ ?

Solution: This is the direction which is exactly opposite of the gradient of $f$ at $(1,2)$, and therefore will be perpendicular to the contour line of $f$ passing through $(1,2)$.
7. (7 points) Use Lagrange multipliers to find the point on the plane $x+y+z=2$ closest to the point $(0,5,-1)$.

Solution: Let $d(x, y, z)=\sqrt{x^{2}+(y-5)^{2}+(z+1)^{2}}$ be the distance from any point $(x, y, z)$ to the point $(0,5,-1)$. Since any minimum of this function occurs when the quantity under the square root has a minimum, we will seek to minimize $f(x, y, z)=$ $d^{2}=x^{2}+(y-5)^{2}+(z+1)^{2}$. The constraint in this problem is that the point must lie on the plane, so we have $g(x, y, z)=x+y+z=2$.
By the method of Lagrange multipliers, any solution satisfies $\nabla f=\lambda \nabla g$ and $g=2$. This gives us the system

$$
\langle 2 x, 2(y-5), 2(z+1)\rangle=\lambda\langle 1,1,1\rangle, \quad x+y+z=2 .
$$

We therefore have $\lambda=2 x=2(y-5)=2(z+1)$, so $x=(y-5)=(z+1)$. Rearranging, we have $y=x+5$ and $z=x-1$, so the constraint equation yields

$$
x+x+5+x-1=2 \Rightarrow x=-\frac{2}{3} .
$$

Therefore the unique solution of the system is $\left(-\frac{2}{3}, \frac{13}{3},-\frac{5}{3}\right)$. We know that this is the location of a minimum of the distance function due to geometry - the line through $(0,5,-1)$ normal to the plane contains the closest point on the plane, and there is no furthest point.
8. You need to approximate the value $\sqrt{4.9^{2}-3.1^{2}}$.
(a) (1 point) Define a function $f(x, y)$ that you will linearize to approximate this square root.

Solution: Many choices of $f$ will work. One of the simplest is $f(x, y)=\sqrt{x^{2}-y^{2}}$.
(b) (2 points) Choose a point $(a, b)$ to base the approximation at and a nearby point $(c, d)$ such that

$$
f(c, d)=\sqrt{4.9^{2}-3.1^{2}}
$$

Solution: Answers will depend on choice in (a). For the choice of $f$ above, the point $(c, d)=(4.9,3.1)$ and a good nearby point to base the approximation at is $(a, b)=(5,3)$.
(c) (4 points) Compute the linearization of your chosen $f$ at $(a, b)$ and use it to approximate the square root.

Solution: Since $L(x, y)=f(a, b)+D f(a, b)\langle x-a, y-b\rangle$, we compute $f(5,3)=$ $\sqrt{5^{2}-3^{2}}=4$ and

$$
D f(5,3)=\left.\left[\begin{array}{ll}
\frac{x}{\sqrt{x^{2}-y^{2}}} & \frac{-y}{\sqrt{x^{2}-y^{2}}}
\end{array}\right]\right|_{(5,3)}=\left[\begin{array}{ll}
\frac{5}{4} & \frac{-3}{4}
\end{array}\right] .
$$

Therefore $L(x, y)=4+\frac{5}{4}(x-5)-\frac{3}{4}(y-3)$ and we have

$$
\sqrt{4.9^{2}-3.1^{2}}=f(4.9,3.1) \approx L(4.9,3.1)=4+\frac{5}{4}(-.1)-\frac{3}{4}(.1)=4-.125-.075=3.8
$$

9. (10 points) Find and classify all of the critical points of the function $f(x, y)=x y(1-x-y)$.

Solution: To find the critical points, we solve the equation $D f(x, y)=\left[\begin{array}{ll}0 & 0\end{array}\right]$. Here

$$
\begin{aligned}
D f(x, y) & =\left[\begin{array}{ll}
y(1-x-y)+x y(-1) & x(1-x-y)+x y(-1)
\end{array}\right] \\
& =\left[\begin{array}{ll}
y(1-2 x-y) & x(1-x-2 y)
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0
\end{array}\right] .
\end{aligned}
$$

From the first component, we have either $y=0$ or $1-2 x-y=0$. If $y=0$, then the second component gives $x(1-x)=0$, so $x=0$ or $x=1$. Thus $(0,0)$ and $(1,0)$ are critical points.
If $1-2 x-y=0$, then $y=1-2 x$ and the second component gives

$$
\begin{aligned}
0 & =x(1-x-2(1-2 x)) \\
& =x(-1+3 x) .
\end{aligned}
$$

So either $x=0$ and $y=1-0=1$ or $x=\frac{1}{3}$ and $y=1-\frac{2}{3}=\frac{1}{3}$. Thus $(0,1)$ and $(1 / 3,1 / 3)$ are also critical points.
To classify the critical points, we compute the Hessian and use the second derivative test.

$$
H f(x, y)=\left[\begin{array}{cc}
-2 y & 1-2 x-2 y \\
1-2 x-2 y & -2 x
\end{array}\right]
$$

At $(0,0), \operatorname{det}(H f(0,0))=(0)(0)-(1)(1)=-1<0$, so $f$ has a saddle point at $(0,0)$.

At $(1,0), \operatorname{det}(H f(1,0))=(0)(-2)-(-1)(-1)=-1<0$, so $f$ has a saddle point at $(1,0)$.

At $(0,1)$, $\operatorname{det}(H f(0,1))=(-2)(0)-(-1)(-1)=-1<0$, so $f$ has a saddle point at $(0,1)$.

At $\left(\frac{1}{3}, \frac{1}{3}\right)$, $\operatorname{det}\left(H f\left(\frac{1}{3}, \frac{1}{3}\right)\right)=\left(\frac{-2}{3}\right)\left(\frac{-2}{3}\right)-\left(\frac{-1}{3}\right)\left(\frac{-1}{3}\right)=\frac{1}{3}>0$ and $f_{x x}\left(\frac{1}{3}, \frac{1}{3}\right)=-\frac{2}{3}<0$, so $f$ has a local max at $\left(\frac{1}{3}, \frac{1}{3}\right)$.

## FORMULA SHEET

- For $\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=$ $\left\langle f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right\rangle$

$$
D \mathbf{f}=\left[\begin{array}{cccc}
\left(f_{1}\right)_{x_{1}} & \left(f_{1}\right)_{x_{2}} & \ldots & \left(f_{1}\right)_{x_{n}} \\
\left(f_{2}\right)_{x_{1}} & \left(f_{2}\right)_{x_{2}} & \ldots & \left(f_{2}\right)_{x_{n}} \\
\vdots & \ddots & \cdots & \vdots \\
\left(f_{m}\right)_{x_{1}} & \left(f_{m}\right)_{x_{2}} & \cdots & \left(f_{m}\right)_{x_{n}}
\end{array}\right]
$$

- Near $\mathbf{a}, L(\mathbf{x})=f(\mathbf{a})+D f(\mathbf{a})(\mathbf{x}-\mathbf{a})$
- If $h=g(f(\mathbf{x}))$ then $D h(\mathbf{x})=D g(f(\mathbf{x})) D f(\mathbf{x})$
- If the equation $F(x, y, z)=c$ implicitly defines $z$ as a function of $x$ and $y$, then $\frac{\partial z}{\partial x}=\frac{-F_{x}}{F_{z}}$ and $\frac{\partial z}{\partial y}=\frac{-F_{y}}{F_{z}}$.
- If $\mathbf{u}$ is a unit vector, $D_{\mathbf{u}} f(P)=D f(P) \mathbf{u}=\nabla f(P) \cdot \mathbf{u}$
- The tangent line to a level curve of $f(x, y)$ at $(a, b)$ is $0=\nabla f(a, b) \cdot\langle x-a, y-b\rangle$
- The tangent plane to a level surface of $f(x, y, z)$ at $(a, b, c)$ is

$$
0=\nabla f(a, b, c) \cdot\langle x-a, y-b, z-c\rangle
$$

- For $f(x, y), H f(x, y)=\left[\begin{array}{ll}f_{x x} & f_{y x} \\ f_{x y} & f_{y y}\end{array}\right]$
- If $(a, b)$ is a critical point of $f(x, y)$ then

1. If $\operatorname{det}(H f(a, b))>0$ and $f_{x x}(a, b)<0$ then $f$ has a local maximum at $(a, b)$
2. If $\operatorname{det}(H f(a, b))>0$ and $f_{x x}(a, b)>0$ then $f$ has a local minimum at $(a, b)$
3. If $\operatorname{det}(H f(a, b))<0$ then $f$ has a saddle point at $(a, b)$
4. If $\operatorname{det}(H f(a, b))=0$ the test is inconclusive

## SCRATCH PAPER - PAGE LEFT BLANK

