MATH 2551-K/L EXAM 2
 VERSION A
 FALL 2022
 COVERS SECTIONS 14.1-14.8

Full name: \qquad

GT ID: \qquad

Honor code statement: I will abide strictly by the Georgia Tech honor code at all times. I will not use a calculator. I will not reference any website, application, or other CAS-enabled service. I will not consult with my notes or anyone during this exam.
() I attest to my integrity.

Read all instructions carefully before beginning.

- You have 50 minutes to take the exam.
- You may not use aids of any kind.
- Please show your work.
- Good luck! Write yourself a message of encouragement on the front page!

Question	Points
1	10
2	10
3	10
4	10
5	10
Total:	50

FORMULA SHEET

- $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos (\theta)$
- $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$
- $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}||\sin (\theta)|$
- For $\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=$ $\left\langle f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right\rangle$

$$
D \mathbf{f}=\left[\begin{array}{cccc}
\left(f_{1}\right)_{x_{1}} & \left(f_{1}\right)_{x_{2}} & \ldots & \left(f_{1}\right)_{x_{n}} \\
\left(f_{2}\right)_{x_{1}} & \left(f_{2}\right)_{x_{2}} & \ldots & \left(f_{2}\right)_{x_{n}} \\
\vdots & \ddots & \ldots & \vdots \\
\left(f_{m}\right)_{x_{1}} & \left(f_{m}\right)_{x_{2}} & \ldots & \left(f_{m}\right)_{x_{n}}
\end{array}\right]
$$

- At $\mathbf{a}, L(\mathbf{x})=f(\mathbf{a})+D f(\mathbf{a})(\mathbf{x}-\mathbf{a})$
- If $h=g(f(\mathbf{x}))$ then $D h(\mathbf{x})=D g(f(\mathbf{x})) D f(\mathbf{x})$
- If \mathbf{u} is a unit vector, $D_{\mathbf{u}} f(P)=D f(P) \mathbf{u}=\nabla f(P) \cdot \mathbf{u}$
- For $f(x, y), H f(x, y)=\left[\begin{array}{ll}f_{x x} & f_{y x} \\ f_{x y} & f_{y y}\end{array}\right]$
- If (a, b) is a critical point of $f(x, y)$ then

1. If $\operatorname{det}(H f(a, b))>0$ and $f_{x x}(a, b)<0$ then f has a local maximum at (a, b)
2. If $\operatorname{det}(H f(a, b))>0$ and $f_{x x}(a, b)>0$ then f has a local minimum at (a, b)
3. If $\operatorname{det}(H f(a, b))<0$ then f has a saddle point at (a, b)
4. If $\operatorname{det}(H f(a, b))=0$ the test is inconclusive

- If (a, b) is the location of a min or max of $f(x, y)$ subject to the constraint $g(x, y)=c$, then $\nabla f(a, b)=\lambda \nabla g(a, b)$ for some λ.

1. Choose whether the following statements are true or false. If the statement is always true, pick true. If the statement is ever false, pick false.
(a) (2 points) Suppose we have a function $f(x, y)$ and $\mathbf{u} \in \mathbb{R}^{2}$ is a unit vector. Then $D_{\mathbf{u}} f(a, b)$ is a vector.
\bigcirc TRUE

FALSE

(b) (2 points) If $f(x, y)=(x+y)^{50}$, then all of the $100^{\text {th }}$ order partial derivatives of f will be 0 .

TRUE

FALSE

(c) (2 points) The total derivative $D f$ of the function $f(x, y, z, w)=2 x y z+3 \ln (w)+$ $\sin \left(e^{x w+z}\right)$ is represented by a 1×4 matrix.TRUE

FALSE

(d) (2 points) Suppose $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1$ along the y-axis, the x-axis, and the line $y=x$ and $f(0,0)=1$. Then f must be continuous at $(0,0)$.
\bigcirc TRUE
FALSE
(e) (2 points) The domain of the function $f(x, y)=\sqrt{x-2}+y$ is the interval $[2, \infty)$.

TRUE

- FALSE

2. Let $f(x, y, z)=x^{2}+z^{2} e^{y-x}$.
(a) (5 points) Find an equation of the tangent plane to the level surface $f=13$ at the point $P=\left(2,3, \frac{3}{\sqrt{e}}\right)$.
(b) (3 points) Find the linearization $L(x, y, z)$ of f at P.
(c) (2 points) Use the linearization you found to approximate the value of $f\left(2,3, \frac{4}{\sqrt{e}}\right)$
3. Below is a contour plot for a smooth function $f(x, y)$. Use this contour plot to answer parts (a)-(c) below.

(a) (2 points) Determine the $\operatorname{sign}(+,-, 0)$ of f_{x} at the point Q.

(b) (2 points) Determine the sign $(+,-, 0)$ of the directional derivative of f in the direction $\mathbf{i}+\mathbf{j}$ at the point R.

Answer: \square
(c) (2 points) Draw a vector in the direction of greatest increase of f at the point P.
(d) (4 points) If $g(x, y)=2 x^{2}-y^{2}$ and $\langle x(t), y(t)\rangle=\langle\cos (t), \sin (t)\rangle$, compute $\frac{d g}{d t}$ at $t=$ $\pi / 3$.

Answer:

4. For all parts of this question be sure to justify your conclusion, using at least one complete sentence.
(a) (4 points) Suppose $f(x, y)$ is a differentiable function defined on all of \mathbb{R}^{2}, $D f(1,3)=\left[\begin{array}{cc}0 & 0\end{array}\right], f_{x x}(1,3)=-2, f_{x y}(1,3)=f_{y x}(1,3)=4$, and $f_{y y}(1,3)=-10$.

What can you conclude about the behavior of f at $(1,3)$?
(b) (6 points) Let $g(x, y)=2 x^{2}+y^{2}$ defined on the disk $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$. Determine the absolute extreme values of g on R.
5. (10 points) You are traveling on an airplane and would like to know what the largest carryon suitcase you can bring with you is. The airline requires that any carry-on item has linear size (sum of the length, width, and height) at most 72 inches. Find the dimensions and maximum volume of the box-shaped suitcase with linear size 72 inches assuming that all of the dimensions must be non-negative. Be sure to explain how you know you have found a maximum.

