Daily Announcements & Reminders:

Goals for Today:

Sections 13.3-13.4

- Define, interpret, and compute the curvature of a curve
- Compute the unit tangent and principal unit normal vectors of a curve
- Give examples of functions of multiple variables
- Find the domain of functions of two variables
- Graph functions of two variables

13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the <u>curvature</u> of a curve in space along with two vectors that orient the curve.

First, we need the **unit tangent vector**, denoted **T**:

• In terms of an arc-length parameter s: _____

• In terms of any parameter t: _____

This lets us define the **curvature**, $\kappa(s) =$ ______

Example 23. Last class we found an arc length parameterization of the circle of radius 4 centered at (0,0) in \mathbb{R}^2 :

$$\mathbf{r}(s) = \left\langle 4\cos\left(\frac{s}{4}\right), 4\sin\left(\frac{s}{4}\right) \right\rangle, \qquad 0 \le s \le 8\pi.$$

Use this to find $\mathbf{T}(s)$ and $\kappa(s)$.

Question: In which direction is \mathbf{T} changing?

This is the direction of the **principal unit normal**, $\mathbf{N}(s) =$ ______

We said last time that it is often hard to find arc length parameterizations, so what do we do if we have a generic parameterization $\mathbf{r}(t)$?

14.1 Functions of Multiple Variables

Definition 25. A ______ is a rule that as-

signs to each ______ of real numbers (x, y) in a set D a ______ denoted by f(x, y).

 $f: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^2$

Example 26. Three examples are

$$f(x,y) = x^2 + y^2$$
, $g(x,y) = \ln(x+y)$, $h(x,y) = \frac{1}{\sqrt{x+y}}$

Example 27. Find the largest possible domains of f, g, and h.

Definition 28. If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.

Here are the graphs of the three functions above.

Example 29. Suppose a small hill has height $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$ m at each point (x, y). How could we draw a picture that represents the hill in 2D?

In 3D, it looks like this.

Definition 30. The ______ (also called ______) of a function f of two variables are the curves with equations ______, where k is a constant (in the range of f). A plot of ______ for various values of z is a ______(or ______).

Some common examples of these are:

- •
- •