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Daily Announcements & Reminders:

Goals for Today: Sections 12.6, 13.1

Sketch quadric surfaces in R?

Introduce vector-valued functions

Plot vector-valued functions and construct them from a graph

Compute limits, derivatives, and tangent lines for vector-valued functions
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Section 12.6 Quadric Surfaces

Definition 11. A quadric surface in R? is the set of points that solve a quadratic
equation in z,y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to
examine their cross-sections.

Example 12. Use cross-sections to sketch and identify the quadric surface z =
2 4,2
s ol T
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TABLE 12.1

Graphs of Quadric Surfaces

12.6 Cylinders and Quadric Surfaces
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Section 13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other one-
dimensional graphs in R? and R? as well. We said that a function r : R — R?
with r(t) = vt + ro produces a straight line when graphed.

This is an example of a vector-valued function: its input is a real number ¢ and
its output is a vector. We graph a vector-valued function by plotting all of the
terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C' in space, producing a vector-valued function r whose graph is

C' is called the curve C, and r is called a of

C.
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Example 13. Consider ri(t) = (cos(t),sin(t),t) and ry(t) = (cos(2t),sin(2t), 2t),
each with domain [0, 27]. What do you think the graph of each looks like? How are
they similar and how are they different?

Check your intuition


https://tinyurl.com/math2551-vvfns-hlx
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Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with limits:

Example 14. Compute }fim(t2,2,ln(t)>.
—e

And with continuity:

Example 15. Determine where the function r(t) = i — j +sin(?)k is contin-

uous.

t2—4
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And with derivatives:

Example 16. If r(t) = (2t — 1 + 1,¢ — 1), find r'(¢).

Interpretation: If r(t) gives the position of an object at time ¢, then

o 1r'(t) gives

o |r'(t)| gives

o r’(t) gives

Let’s see this graphically

Example 17. Find an equation of the tangent line to r(t) = (2t — 3t + 1,t — 1) at
time ¢ = 2.


https://tinyurl.com/math2551-vvfnx-vel-accel

