Daily Announcements & Reminders:

Goals for Today:

Sections 12.6, 13.1

- Sketch quadric surfaces in \mathbb{R}^3
- Introduce vector-valued functions
- Plot vector-valued functions and construct them from a graph
- Compute limits, derivatives, and tangent lines for vector-valued functions

Section 12.6 Quadric Surfaces

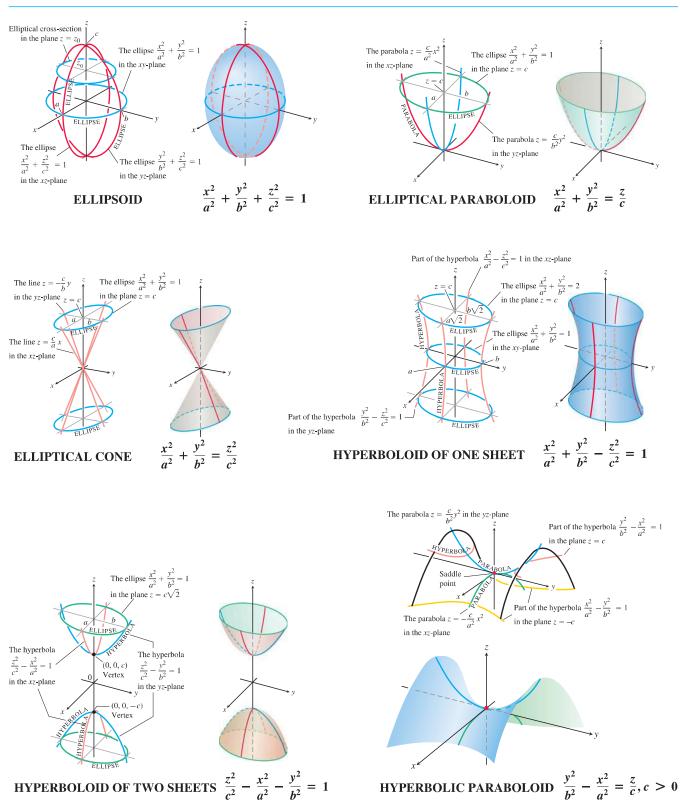
Definition 11. A quadric surface in \mathbb{R}^3 is the set of points that solve a quadratic equation in x, y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to examine their cross-sections.

Example 12. Use cross-sections to sketch and identify the quadric surface $x = z^2 + y^2$.

12.6 Cylinders and Quadric Surfaces 743



Section 13.1 Curves in Space & Their Tangents

The description we gave of a line last week generalizes to produce other onedimensional graphs in \mathbb{R}^2 and \mathbb{R}^3 as well. We said that a function $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$ with $\mathbf{r}(t) = \mathbf{v}t + \mathbf{r}_0$ produces a straight line when graphed.

This is an example of a **vector-valued function**: its input is a real number t and its output is a vector. We graph a vector-valued function by plotting all of the terminal points of its output vectors, placing their initial points at the origin.

You have seen several examples already:

Given a fixed curve C in space, producing a vector-valued function \mathbf{r} whose graph is

C is called ______ the curve C, and \mathbf{r} is called a ______ of

Example 13. Consider $\mathbf{r}_1(t) = \langle \cos(t), \sin(t), t \rangle$ and $\mathbf{r}_2(t) = \langle \cos(2t), \sin(2t), 2t \rangle$, each with domain $[0, 2\pi]$. What do you think the graph of each looks like? How are they similar and how are they different?

Calculus of vector-valued functions

Unifying theme: Do what you already know, componentwise.

This works with <u>limits</u>:

Example 14. Compute $\lim_{t\to e} \langle t^2, 2, \ln(t) \rangle$.

And with continuity:

Example 15. Determine where the function $\mathbf{r}(t) = t\mathbf{i} - \frac{1}{t^2 - 4}\mathbf{j} + \sin(t)\mathbf{k}$ is continuous.

And with <u>derivatives</u>:

Example 16. If $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$, find $\mathbf{r}'(t)$.

Interpretation: If $\mathbf{r}(t)$ gives the position of an object at time t, then

- $\mathbf{r}'(t)$ gives _____
- $|\mathbf{r}'(t)|$ gives _____
- $\mathbf{r}''(t)$ gives _____

Let's see this graphically

Example 17. Find an equation of the tangent line to $\mathbf{r}(t) = \langle 2t - \frac{1}{2}t^2 + 1, t - 1 \rangle$ at time t = 2.