Daily Announcements & Reminders:

Goals for Today:

Sections 12.5-12.6

- Apply the cross product to solve problems
- Learn the equations that describe lines, planes, and quadric surface in \mathbb{R}^3
- Solve problems involving the equations of lines and planes
- Sketch quadric surfaces in \mathbb{R}^3

Goal: Given two vectors, produce a vector orthogonal to both of them in a "nice" way.

1.

2.

Definition 5. The cross product of two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ in \mathbb{R}^3 is

u × v = _____

Example 6. Find $\langle 1, 2, 0 \rangle \times \langle 3, -1, 0 \rangle$.

Section 12.5 Lines & Planes

Lines in \mathbb{R}^2 , a new perspective:

Example 7. Find a vector equation for the line that goes through the points P = (1, 0, 2) and Q = (-2, 1, 1).

Planes in \mathbb{R}^3

Conceptually: A plane is determined by either three points in \mathbb{R}^3 or by a single point and a direction **n**, called the *normal vector*.

Algebraically: A plane in \mathbb{R}^3 has a *linear* equation (back to Linear Algebra! imposing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)

Example 8. Consider the planes y - z = -2 and x - y = 0. Show that the planes intersect and find an equation for the line passing through the point P = (-8, 0, 2) which is parallel to the line of intersection of the planes.

Page 12

Section 12.6 Quadric Surfaces

Definition 9. A quadric surface in \mathbb{R}^3 is the set of points that solve a quadratic equation in x, y, and z.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to examine their cross-sections.

Example 10. Use cross-sections to sketch and identify the quadric surface $x = z^2 + y^2$.

12.6 Cylinders and Quadric Surfaces 743

TABLE 12.1 Graphs of Quadric Surfaces