Daily Announcements & Reminders:

Goals for Today:

Section 16.6/16.7

- Compute flux surface integrals
- Interpret the physical significance of flux surface integrals
- Introduce and apply Stokes' Theorem for surface integrals

Goal: If **F** is a vector field in \mathbb{R}^3 , find the total flux of **F** through a surface S.

Note: If the flux is positive, that means the net movement of the field through S is in the direction of ______

If $\mathbf{r}(u, v)$ is a smooth parameterization of S with domain R, we have

flux of **F** through
$$S = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \, d\sigma = \iint_{R} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dA.$$

Example 131. Find the flux of $\mathbf{F} = \langle x, y, z \rangle$ through the upper hemisphere of $x^2 + y^2 + z^2 = 4$, oriented away from the origin.

Example 132 (Poll). Suppose S is a smooth surface in \mathbb{R}^3 and **F** is a vector field in \mathbb{R}^3 . True or False: If $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma > 0$, then the angle between **F** and **n** is acute at all points on S.

Example 133 (Poll). Based on the plot of the vector field \mathbf{F} and the surface S below, oriented in the positive *y*-direction, is the flux integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$ positive, negative, or zero?

Recall: If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field, we defined its:

1. divergence: $\nabla \cdot \mathbf{F} = P_x + Q_y + R_z$

2. curl:
$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$$

Example 134 (Poll). Suppose $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field in \mathbb{R}^3 with continuous partial derivatives. Compute the divergence of the curl of \mathbf{F} , i.e. $\nabla \cdot (\nabla \times \mathbf{F})$.

Theorem 135 (Stokes' Theorem). Let S be a smooth oriented surface and C be its compatibly oriented boundary. Let \mathbf{F} be a vector field with continuous partial derivatives. Then

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ d\sigma = \int_{C} \mathbf{F} \cdot \mathbf{T} \ ds.$$

- If S is a region R in the xy-plane, then we get:
- An oriented surface is one where _____
- S and C are oriented compatibly if: