Daily Announcements & Reminders:

Goals for Today:

Section 16.4

- Define the divergence and curl of a vector field
- Interpret divergence and curl geometrically
- Apply Green's Theorem to compute line integrals over the boundary of a simply-connected region

Useful notation: $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$

So if f(x, y, z) is a function of three variables, $\nabla f = \left\langle \frac{\partial}{\partial x}(f), \frac{\partial}{\partial y}(f), \frac{\partial}{\partial z}(f) \right\rangle$

If $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$ is a vector field:

• $\nabla \cdot \mathbf{F} =$

•
$$\nabla \times \mathbf{F} =$$

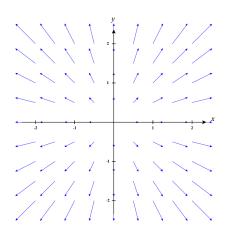
How do we measure the change of a vector field?

1. Curl (in \mathbb{R}^3)

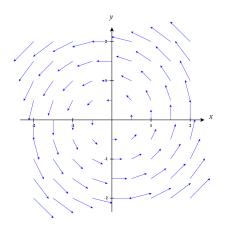
- Tells us _____
- Measures _____
- Is a _____
- Direction gives _____
- Magnitude gives _____
- $\operatorname{curl} \mathbf{F} =$
- If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$: we use $\nabla \times \mathbf{F} = \nabla \times \langle P, Q, 0 \rangle$

- 2. Divergence (in any \mathbb{R}^n)
 - Tells us _____
 - Measures _____
 - Is a _____
 - div $\mathbf{F} =$

Example 122. Let $\mathbf{F}(x, y) = \langle x, y \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.



Example 123 (Poll). Let $\mathbf{F}(x, y) = \langle -y, x \rangle$. Based on the visualization of this vector field below, what can we say about the sign (+,-,0) of the divergence and scalar curl of this vector field? Verify by computing the divergence and scalar curl.



Question: How is this useful?

gion to the behavior of the vector field on the boundary of the region.

Theorem 124 (Green's Theorem). Suppose C is a piecewise smooth, simple, closed curve enclosing on its left a region R in the plane with outward oriented unit normal **n**. If $\mathbf{F} = \langle P, Q \rangle$ has continuous partial derivatives around R, then

a) Circulation form:

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C P \, dx + Q \, dy = \iint_R (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA = \iint_R Q_x - P_y \, dA$$

b) Flux form:

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_C P \, dy - Q \, dx = \iint_R (\nabla \cdot \mathbf{F}) \, dA = \iint_R P_x + Q_y \, dA$$

Example 125. Evaluate the line integral $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ for the vector field $\mathbf{F} = \langle -y^2, xy \rangle$ where *C* is the boundary of the square bounded by x = 0, x = 1, y = 0, and y = 1 oriented counterclockwise.

Example 126. Compute the flux out of the region R which is the portion of the annulus between the circles of radius 1 and 3 in the first octant for the vector field $\mathbf{F} = \langle \frac{1}{3}x^3, \frac{1}{3}y^3 \rangle$.

Example 127. Let *R* be the region bounded by the curve $\mathbf{r}(t) = \langle \sin(2t), \sin(t) \rangle$ for $0 \le t \le \pi$. Find the area of *R*, using Green's Theorem applied to the vector field $\mathbf{F} = \frac{1}{2} \langle x, y \rangle$.

Note: This is the idea behind the operation of the measuring instrument known as a planimeter.