Daily Announcements & Reminders:

Goals for Today:

Section 16.1, 16.2

- Define a line integral for a scalar function f(x, y) or f(x, y, z)
- Compute line integrals using parameterizations

Unit 4: Vector Calculus

Goals:

- Extend ______ integrals to ______ objects living in higherdimensional space
- Extend the _____ in new ways

We will use tools from everything we have covered so far to do this: parameterizations, derivatives and gradients, and multiple integrals. **Example 105.** Suppose we build a wall whose base is the straight line from (0,0) to (1,1) in the *xy*-plane and whose height at each point is given by $h(x,y) = 2x + y^2$ meters. What is the area of this wall?

Definition 106. The line integral of a scalar function f(x, y) over a curve C in \mathbb{R}^2 is

$$\int_C f(x,y) \ ds =$$

What things can we compute with this?

- If f = 1:
- If $f = \delta$ is a density function:
- If f is a height:

Strategy for computing line integrals:

- 1. Parameterize the curve C with some $\mathbf{r}(t)$ for $a \leq t \leq b$
- 2. Compute $ds = \|\mathbf{r}'(t)\| dt$
- 3. Substitute: $\int_C f(x, y, z) \, ds = \int_a^b f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| \, dt$
- 4. Integrate

Example 107. [Poll] Compute $\int_C 2x + y^2 ds$ along the curve C given by $\mathbf{r}(t) = 10t\mathbf{i} + 10t\mathbf{j}$ for $0 \le t \le \frac{1}{10}$.

Example 108. Compute $\int_C 2x + y^2 ds$ along the curve C pictured below.

Example 109 (Poll). Let C be a curve parameterized by $\mathbf{r}(t)$ from $a \leq t \leq b$. Select all of the true statements below.

a) $\mathbf{r}(t+4)$ for $a \le t \le b$ is also a parameterization of C with the same orientation

b) $\mathbf{r}(2t)$ for $a/2 \le t \le b/2$ is also a parameterization of C with the same orientation

c) $\mathbf{r}(-t)$ for $a \le t \le b$ is also a parameterization of C with the opposite orientation

d) $\mathbf{r}(-t)$ for $-b \leq t \leq -a$ is also a parameterization of C with the opposite orientation

e) $\mathbf{r}(b-t)$ for $0 \le t \le b-a$ is also a parameterization of C with the opposite orientation

Example 110. Find a parameterization of the curve C that consists of the portion of the curve $y = x^2 + 1$ from (1, 2) to (0, 1) and use it to write the integral $\int_C x^2 + y^2 ds$ as an integral with respect to your parameter.