Daily Announcements & Reminders:

Goals for Today:

• Be able to convert between Cartesian, cylindrical, and spherical coordinate systems in \mathbb{R}^3

For uniqueness:

- Compute triple integrals expressed in cylindrical coordinates
- Compute triple integrals expressed in spherical coordinates

Cylindrical Coordinate System

Example 92. a) Find cylindrical coordinates for the point with Cartesian coordinates $(-1, \sqrt{3}, 3)$.

b)Find Cartesian coordinates for the cylindrical coordinates point with $(2, 5\pi/4, 1).$

 $x = r\cos(\theta), \quad y = r\sin(\theta),$ z = z

Cartesian to Cylindrical:

$$r^2 = x^2 + y^2$$
, $\tan(\theta) = \frac{y}{x}$, $z = z$

Section 15.7

Example 93. In xyz-space sketch the cylindrical box

 $B = \{ (r, \theta, z) \mid 1 \le r \le 2, \ \pi/6 \le \theta \le \pi/3, \ 0 \le z \le 2 \}.$

Triple Integrals in Cylindrical Coordinates

We have dV = _____

Example 94. Set up a iterated integral in cylindrical coordinates for the volume of the region D lying below z = x + 2, above the xy-plane, and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Example 95 (Poll). Suppose the density of the cone defined by r = 1 - z with $z \ge 0$ is given by $\delta(r, \theta, z) = z$. Set up an iterated integral in cylindrical coordinates that gives the mass of the cone.

Spherical Coordinate System

Spherical to Cartesian:

$$x = \rho \sin(\varphi) \cos(\theta)$$
$$y = \rho \sin(\varphi) \sin(\theta)$$
$$z = \rho \cos(\varphi)$$

Cartesian to Spherical:

$$\rho^2 = x^2 + y^2 + z^2$$
$$\tan(\theta) = \frac{y}{x}$$
$$\tan(\varphi) = \frac{\sqrt{x^2 + y^2}}{z}$$

For uniqueness:

Example 96. a) Find spherical coordinates for the point with Cartesian coordinates $(-2, 2, \sqrt{8})$.

b) Find Cartesian coordinates for the point with spherical coordinates $(2, \pi/2, \pi/3)$.

Example 97. In xyz-space sketch the spherical box

 $B = \{(\rho, \varphi, \theta) \mid 1 \le \rho \le 2, \ 0 \le \varphi \le \pi/4, \ \pi/6 \le \theta \le \pi/3\}.$

Triple Integrals in Spherical Coordinates

We have dV = _____

Example 98. Write an iterated integral for the volume of the "ice cream cone" D bounded above by the sphere $x^2+y^2+z^2=1$ and below by the cone $z=\sqrt{3}\sqrt{x^2+y^2}$.

Example 99 (Poll). Write an iterated integral for the volume of the region that lies inside the sphere $x^2 + y^2 + z^2 = 2$ and outside the cylinder $x^2 + y^2 = 1$.

