Daily Announcements & Reminders:

Goals for Today:

Sections 15.1, 15.2

- Introduce double and iterated integrals for functions of two variables on rectangles
- Use Fubini's Theorem to change the order of integration of a iterated integral
- Be able to set up & evaluate a double integral over a general region
- Change the order of integration for general regions

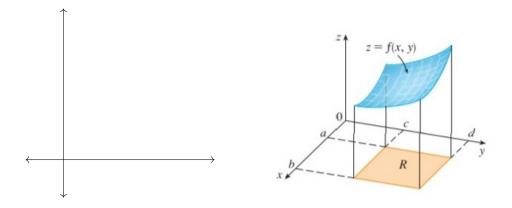
Recall: Riemann sum and the definite integral from single-variable calculus.

Double Integrals

Volumes and Double integrals Let R be the closed rectangle defined below:

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

Let f(x, y) be a function defined on R such that $f(x, y) \ge 0$. Let S be the solid that lies above R and under the graph f.



Question: How can we estimate the volume of S?

Definition 73. The ______ of f(x, y) over a rectangle R is

$$\iint_R f(x,y) \ dA = \lim_{|P| \to 0} \sum_{k=1}^n f(x_k, y_k) \Delta A_k$$

if this limit exists.

Question: How can we compute a double integral?

Answer:

Suppose that f is a function of two variables that is integrable on the rectangle $R = [a, b] \times [c, d].$

What does $\int_{c}^{d} f(2, y) dy$ represent?

Let $A(x) = \int_{c}^{d} f(x, y) dy$. Then,

$$= \int_{a}^{b} A(x) dx =$$

This is called an _____.

Example 74. Evaluate $\int_{1}^{2} \int_{3}^{4} 6x^{2}y \, dy \, dx$.

Theorem 75 (Fubini's Theorem). If f is continuous on the rectangle $R = [a, b] \times [c, d]$, then

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Example 76. Compute $\iint_R x e^{e^{e^y}} dA$, where R is the rectangle $[-1, 1] \times [0, 4]$.

Question: What if the region R we wish to integrate over is not a rectangle?

Answer: Repeat same procedure - it will work if the boundary of R is smooth and f is continuous.

Example 77. Compute the volume of the solid whose base is the triangle with vertices (0,0), (0,1), (1,0) in the *xy*-plane and whose top is z = 2 - x - y.

Vertically simple:

Horizontally simple: