Daily Announcements & Reminders:

Goals for Today:

Section 14.7

- Define local & global extreme values for functions of two variables
- Learn how to find local extreme values for functions of two variables
- Learn how to classify critical points for functions of two variables
- Learn how to find global extreme values on a closed & bounded domain

Last time: If f(x, y) is a function of two variables, we said $\nabla f(a, b)$ points in the direction of greatest change of f.

Back to the hill $h(x, y) = 4 - \frac{1}{4}x^2 - \frac{1}{4}y^2$! What should we expect to get if we compute $\nabla h(0, 0)$? Why? What does the tangent plane to z = h(x, y) at (0, 0, 4) look like?

Definition 63. Let f(x, y) be defined on a region containing the point (a, b). We say

- f(a, b) is a ______ value of f if f(a, b) _____ f(x, y) for all domain points (x, y) in a disk centered at (a, b)
- f(a, b) is a ______ value of f if f(a, b) _____ f(x, y) for all domain points (x, y) in a disk centered at (a, b)

In \mathbb{R}^3 , another interesting thing can happen. Let's look at $z = x^2 - y^2$ (a hyperbolic paraboloid!) near (0,0).

This is called a _____

Notice that in all of these examples, we have a horizontal tangent plane at the point in question, i.e.

Definition 64. If f(x, y) is a function of two variables, a point (a, b) in the domain of

f with Df(a, b) = ______ or where Df(a, b) ______

is called a _____ of f.

Example 65. Find the critical points of the function $f(x, y) = x^3 + y^3 - 3xy$.

To classify critical points, we turn to the **second derivative test** and the **Hessian matrix**. The **Hessian matrix** of f(x, y) at (a, b) is

$$Hf(a,b) =$$

Theorem 66 (2nd Derivative Test). Suppose (a, b) is a critical point of f(x, y) and f has continuous second partial derivatives. Then we have:

- If det(Hf(a, b)) > 0 and $f_{xx}(a, b) > 0$, f(a, b) is a local minimum
- If det(Hf(a,b)) > 0 and $f_{xx}(a,b) < 0$, f(a,b) is a local maximum
- If det(Hf(a, b)) < 0, f has a saddle point at (a, b)
- If det(Hf(a, b)) = 0, the test is inconclusive.

More generally, if $f : \mathbb{R}^n \to \mathbb{R}$ has a critical point at **p** then

- If all eigenvalues of Hf(p) are positive, f is concave up in every direction from p and so has a local minimum at p.
- If all eigenvalues of $Hf(\mathbf{p})$ are negative, f is concave down in every direction from \mathbf{p} and so has a local maximum at \mathbf{p} .
- If some eigenvalues of $Hf(\mathbf{p})$ are positive and some are negative, f is concave up in some directions from \mathbf{p} and concave down in others, so has neither a local minimum or maximum at \mathbf{p} .
- If all eigenvalues of $Hf(\mathbf{p})$ are positive or zero, f may have either a local minimum or neither at \mathbf{p} .
- If all eigenvalues of $Hf(\mathbf{p})$ are negative or zero, f may have either a local maximum or neither at \mathbf{p} .

Example 67. Classify the critical points of $f(x, y) = x^3 + y^3 - 3xy$ from Example 65.

Two Local Maxima, No Local Minimum: The function $g(x, y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2 + 2$ has two critical points, at (-1, 0) and (1, 2). Both are local maxima, and the function never has a local minimum!

A global maximum of f(x, y) is like a local maximum, except we must have $f(a, b) \ge f(x, y)$ for all (x, y) in the domain of f. A global minimum is defined similarly.

Theorem 68. On a closed \mathcal{E} bounded domain, any continuous function f(x, y) attains a global minimum \mathcal{E} maximum.

Closed:

Bounded:

Strategy for finding global min/max of f(x,y) on a closed & bounded domain R

- 1. Find all critical points of f inside R.
- 2. Find all critical points of f on the boundary of R
- 3. Evaluate f at each critical point as well as at any endpoints on the boundary.
- 4. The smallest value found is the global minimum; the largest value found is the global maximum.

Example 69. Find the global minimum and maximum of $f(x, y) = 4x^2 - 4xy + 2y$ on the closed region R bounded by $y = x^2$ and y = 4.