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Day 1 - Course Introduction and Cross Products

Pre-Lecture
12.1: Three-Dimensional Coordinates
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Day 1 - Lecture
Daily Announcements & Reminders:

Goals for Today: Sections 12.1, 12.3, 12.4 

• Set classroom norms

• Describe the big-picture goals of the class

• Review ℝ3 and the dot product

• Introduce the cross product and its properties

Class Values/Norms:

• Mistakes are a learning opportunity

• Mathematics is collaborative

• Make sure everyone is included

• Criticize ideas, not people

• Be respectful of everyone

•

•
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Introduction to the Course

 Big Idea: Extend differential & integral calculus.

What are some key ideas from these two courses?

Differential Calculus Integral Calculus

Before: we studied single-variable functions 𝑓 ∶ ℝ → ℝ like 𝑓(𝑥) = 2𝑥2 − 6.

Now: we will study multi-variable functions 𝑓 ∶ ℝ𝑛 → ℝ𝑚: each of these 
functions is a rule that assigns one output vector with 𝑚 entries to each input 
vector with 𝑛 entries. 
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Example 1. What shape is the set of solutions (𝑥, 𝑦, 𝑧) ∈ ℝ3 to the equation

𝑥2 + 𝑦2 = 1?

Example 2. What is the distance from (3, 2,−2) to the 𝑥𝑦-plane? What is the 
distance to the 𝑥-axis?
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Section 12.3/4: Dot & Cross Products

Definition 3. The dot product of two vectors u = ⟨𝑢1, 𝑢2,… , 𝑢𝑛⟩ and v =
⟨𝑣1, 𝑣2,… , 𝑣𝑛⟩ is

u ⋅ v =

This product tells us about .

In particular, two vectors are orthogonal if and only if their dot product is .

Example 4. Are u = ⟨1, 1, 4⟩ and v = ⟨−3,−1, 1⟩ orthogonal?
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Goal: Given two vectors, produce a vector orthogonal to both of them in a “nice” 
way.

1.

2.

Definition 5. The cross product of two vectors u = ⟨𝑢1, 𝑢2, 𝑢3⟩ and v =
⟨𝑣1, 𝑣2, 𝑣3⟩ in ℝ3 is 

u × v =
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Example 6. Find ⟨1, 2, 0⟩ × ⟨3,−1, 0⟩.
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Day 2 - Lines, Planes, and Quadrics

Pre-Lecture
12.5: Lines

Lines in ℝ2, a new perspective:

Example 7. Find a vector equation for the line that goes through the points 𝑃 =
(1, 0, 2) and 𝑄 = (−2, 1, 1).
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Day 2 Lecture
Daily Announcements & Reminders:

Goals for Today: Sections 12.5-12.6 

• Apply the cross product to solve problems

• Learn the equations that describe lines, planes, and quadric surfaces in ℝ3

• Solve problems involving the equations of lines and planes

• Sketch quadric surfaces in ℝ3

Example 8. Find a set of parametric equations for the line through the point 
(1, 10, 100) which is parallel to the line with vector equation

r(𝑡) = ⟨1, 4,−3⟩𝑡 + ⟨0,−1, 1⟩
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Section 12.5 Planes

Planes in ℝ3

Conceptually: A plane is determined by either three points in ℝ3 or by a single 
point and a direction n, called the normal vector. 

Algebraically: A plane in ℝ3 has a linear equation (back to Linear Algebra! 
imposing a single restriction on a 3D space leaves a 2D linear space, i.e. a plane)
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In ℝ3, a pair of lines can be related in three ways:

parallel skew intersecting

On the other hand, a pair of planes can be related in just two ways:

parallel intersecting
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Example 9. Consider the planes 𝑦 − 𝑧 = −2 and 𝑥 − 𝑦 = 0. Show that the planes 
intersect and find an equation for the line passing through the point 𝑃 = (−8, 0, 2)
which is parallel to the line of intersection of the planes.
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Section 12.6 Quadric Surfaces

Definition 10. A quadric surface in ℝ3 is the set of points that solve a quadratic 
equation in 𝑥, 𝑦, and 𝑧.

You know several examples already:

The most useful technique for recognizing and working with quadric surfaces is to 
examine their cross-sections.

Example 11. Use cross-sections to sketch and identify the quadric surface 𝑥 =
𝑧2 + 𝑦2.
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Day 3 - Vector-Valued Functions & Calculus

Pre-Lecture
Section 13.1: Vector-Valued Functions

Last week, we used functions like

ℓ(𝑡) = ⟨2𝑡 + 1, 3 − 𝑡, 𝑡 − 1⟩, −∞ ≤ 𝑡 ≤ ∞

to produce lines in ℝ2 and ℝ3.

This is an example of a vector-valued function: its input is a real number 𝑡 and 
its output is a vector. We graph a vector-valued function by plotting all of the 
terminal points of its output vectors, placing their initial points at the origin.

What happens when we change the component functions to be non-linear?

Given a fixed curve 𝐶 in space, producing a vector-valued function r whose graph is 

𝐶 is called  the curve 𝐶, and r is called a of 𝐶.
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Day 3 Lecture
Daily Announcements & Reminders:

Goals for Today: Sections 13.1, 13.2 

• Introduce vector-valued functions

• Plot vector-valued functions and construct them from a graph

• Compute limits, derivatives, and tangent lines for vector-valued functions

• Compute integrals of vector-valued functions and solve initial value problems

Example 12. Consider r1(𝑡) = ⟨cos(𝑡), sin(𝑡), 𝑡⟩ and r2(𝑡) = ⟨cos(2𝑡), sin(2𝑡), 2𝑡⟩, 
each with domain [0, 2𝜋]. What do you think the graph of each looks like? How are 
they similar and how are they different?

Check your intuition

https://tinyurl.com/math2551-vvfns-hlx
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Section 13.1: Calculus of Vector-Valued Functions

Unifying theme: Do what you already know, componentwise.

This works with limits:

Example 13. Compute lim
𝑡→𝑒

⟨𝑡2, 2, ln(𝑡)⟩.

And with continuity:

Example 14. Determine where the function r(𝑡) = 𝑡i−
1

𝑡2 − 4
j+ sin(𝑡)k is contin­

uous.
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And with derivatives:

Example 15. If r(𝑡) = ⟨2𝑡 − 1
2𝑡

2 + 1, 𝑡 − 1⟩, find r′(𝑡).

Interpretation: If r(𝑡) gives the position of an object at time 𝑡, then

• r′(𝑡) gives 

• ‖r′(𝑡)‖ gives 

• r″(𝑡) gives 

Let’s see this graphically

Example 16. Find an equation of the tangent line to r(𝑡) = ⟨2𝑡− 1
2𝑡

2 +1, 𝑡− 1⟩ at 
time 𝑡 = 2.

https://tinyurl.com/math2551-vvfnx-vel-accel
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And with integrals:

Example 17. Find ∫
1

0
⟨𝑡, 𝑒2𝑡, sec2(𝑡)⟩ 𝑑𝑡.

At this point we can solve initial-value problems like those we did in single-variable 
calculus:

Example 18. Wallace is testing a rocket to fly to the 
moon, but he forgot to include instruments to record his 
position during the flight. He knows that his velocity dur­
ing the flight was given by

v(𝑡) = ⟨−200 sin(2𝑡), 200 cos(𝑡), 400 −
400
1 + 𝑡⟩ 𝑚/𝑠.

If he also knows that he started at the point r(0) = ⟨0, 0, 0⟩, 
use calculus to reconstruct his flight path.
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Day 4 - Geometry of Curves

Pre-Lecture
Section 13.3: Arc Length

We have discussed motion in space using by equations like r(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)⟩.

Our next goal is to be able to measure distance traveled or arc length.

Motivating problem: Suppose the position of a fly at time 𝑡 is

r(𝑡) = ⟨2 cos(𝑡), 2 sin(𝑡)⟩,

where 0 ≤ 𝑡 ≤ 2𝜋.

How far does the fly travel from 𝑡 = 0 to 𝑡 = 𝜋?

Definition 19. We say that the arc length of a smooth curve
r(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)⟩ from  to  that is traced out ex­
actly once is

𝐿 =
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Day 4 Lecture
Daily Announcements & Reminders:

Goals for Today: Sections 13.3, 13.4 

• Compute arc lengths of curves using parameterizations

• Define and compute arc-length parameterizations

• Define, interpret, and compute the curvature of a curve

• Compute the unit tangent and principal unit normal vectors of a curve

Example 20. Set up an integral for the arc length of the curve r(𝑡) = 𝑡i+𝑡2j+𝑡3k
from the point (1, 1, 1) to the point (2, 4, 8).
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Example 21. Find the distance traveled by a particle moving along 
the path

r(𝑡) = ⟨ln(𝑡),
√
2𝑡,

1
2𝑡

2⟩, 𝑡 > 0

from 𝑡 = 1 to 𝑡 = 2.

Sometimes, we care about the distance traveled from a fixed starting time 𝑡0 to an 
arbitrary time 𝑡, which is given by the arc length function.

𝑠(𝑡) =

We can use this function to produce parameterizations of curves where the parameter 
𝑠 measures distance along the curve: the points where 𝑠 = 0 and 𝑠 = 1 would be 
exactly 1 unit of distance apart. 
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Example 22. Find an arc length parameterization of the circle of radius 4 about 
the origin in ℝ2, r(𝑡) = ⟨4 cos(𝑡), 4 sin(𝑡)⟩, 0 ≤ 𝑡 ≤ 2𝜋.
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13.4 - Curvature, Tangents, Normals

The next idea we are going to explore is the curvature of a curve in space along with 
two vectors that orient the curve.

First, we need the unit tangent vector, denoted T:

• In terms of an arc-length parameter 𝑠: 

• In terms of any parameter 𝑡: 

This lets us define the curvature, 𝜅(𝑠) =
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Example 23. Earlier, we found an arc length parameterization of the circle of radius 
4 centered at (0, 0) in ℝ2:

r(𝑠) = ⟨4 cos(
𝑠
4) , 4 sin(

𝑠
4)⟩ , 0 ≤ 𝑠 ≤ 8𝜋.

Use this to find T(𝑠) and 𝜅(𝑠).

Question: In which direction is T changing?

This is the direction of the principal unit normal, N(𝑠) =
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We said that it is often hard to find arc length parameterizations, so what do we 
do if we have a generic parameterization r(𝑡)?

• T(𝑡) =

• 𝜅(𝑡) =  or

• N(𝑡) =

Example 24. Find T,N, 𝜅 for the helix r(𝑡) = ⟨2 cos(𝑡), 2 sin(𝑡), 𝑡 − 1⟩.
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Day 5 - Functions of Multiple Variables
Pre-Lecture

Section 14.1: Functions of Multiple Variables

Definition 25. A  is a rule that 
assigns to each  of real numbers (𝑥, 𝑦) in a set 𝐷 a 

 denoted by 𝑓(𝑥, 𝑦).

𝑓 ∶ 𝐷 → ℝ,  where 𝐷 ⊆ ℝ2

Example 26. Three examples are

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2, 𝑔(𝑥, 𝑦) = ln(𝑥 + 𝑦), ℎ(𝑥, 𝑦) = ℎ(𝑥, 𝑦) = √4 − 𝑥2 − 𝑦2.

Example 27. Find the largest possible domains of 𝑓, 𝑔, and ℎ.
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Day 5 Lecture
Daily Announcements & Reminders: 

Goals for Today: Sections 13.4-14.1 

• Compute the unit tangent and principal unit normal vectors of a curve

• Give examples of functions of multiple variables

• Find the domain of functions of two variables

• Introduce and sketch traces and contours of functions of two variables

• Graph functions of two variables

In the pre-lecture video, we discussed the domains of the functions 𝑓(𝑥, 𝑦) = 𝑥2 +
𝑦2, 𝑔(𝑥, 𝑦) = ln(𝑥 + 𝑦), and ℎ(𝑥, 𝑦) = √4 − 𝑥2 − 𝑦2.

Definition 28. If 𝑓 is a function of two variables with domain 𝐷, then the graph 
of 𝑓 is the set of all points (𝑥, 𝑦, 𝑧) in ℝ3 such that 𝑧 = 𝑓(𝑥, 𝑦) and (𝑥, 𝑦) is in 𝐷.

Here are the graphs of the three functions above.

https://tinyurl.com/math2551-2var-fns-g1
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Example 29. Suppose a small hill has height ℎ(𝑥, 𝑦) = 4 −
1
4𝑥

2 −
1
4𝑦

2 m at each 
point (𝑥, 𝑦). How could we draw a picture that represents the hill in 2D?

In 3D, it looks like this.

Definition 30. The  (also called ) of a function 
𝑓 of two variables are the curves with equations , where 𝑘 is a 
constant (in the range of 𝑓). A plot of  for various values of 𝑧 is a 

(or ).

Some common examples of these are:

•

•

•

https://tinyurl.com/math2551-2var-first-ex-graph
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Example 31. Create a contour diagram of 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2
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Day 6 - Functions of Multiple Variables & Limits
Pre-Lecture

Section 14.1: Traces & Graphs

Definition 32. The  of a surface are the curves of 
 of the surface with planes parallel to the 

.

Example 33. Find the traces of the surface 𝑧 = 𝑥2 − 𝑦2.
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Day 6 Lecture
Daily Announcements & Reminders: 

Goals for Today: Sections 14.1-14.2 

• Introduce and sketch traces and contours of functions of two variables

• Graph functions of two variables

• Find level surfaces of functions of three variables

• Evaluate limits of functions of two variables

Example 34. Create a contour diagram of 𝑔(𝑥, 𝑦) = √16 − 4𝑥2 − 𝑦2.
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Example 35. Use the traces and contours of 𝑧 = 𝑓(𝑥, 𝑦) = 4 − 2𝑥 − 𝑦2 to sketch 
the portion of its graph in the first octant.

Let’s check our work: https://tinyurl.com/math2551-2var-graph

https://tinyurl.com/math2551-2var-graph
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Definition 36. A  is a rule that 
assigns to each  of real numbers (𝑥, 𝑦, 𝑧) in a set 𝐷 a 

 denoted by 𝑓(𝑥, 𝑦, 𝑧).

𝑓 ∶ 𝐷 → ℝ,  where 𝐷 ⊆ ℝ3

We can still think about the domain and range of these functions. Instead of level 
curves, we get level surfaces.

Example 37. Describe the domain of the function 𝑓(𝑥, 𝑦, 𝑧) =
1

4 − 𝑥2 − 𝑦2 − 𝑧2 .

Example 38. Describe the level surfaces of the function 𝑔(𝑥, 𝑦, 𝑧) = 2𝑥2 +𝑦2 + 𝑧2.
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Section 14.2 Limits & Continuity

Definition 39. What is a limit of a function of two variables?

We won’t use this definition much: the big idea is that lim
(𝑥,𝑦)→(𝑥0,𝑦0)

𝑓(𝑥, 𝑦) = 𝐿 if and 
only if 𝑓(𝑥, 𝑦)  regardless of how we approach 
(𝑥0, 𝑦0).

Definition 40. A function 𝑓(𝑥, 𝑦) is continuous at (𝑥0, 𝑦0) if
1.

2.

3.

Key Fact: Adding, subtracting, multiplying, dividing, or composing two continuous 
functions results in another continuous function.
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Example 41. Evaluate lim
(𝑥,𝑦)→(2,0)

√2𝑥 − 𝑦 − 2
2𝑥 − 𝑦 − 4 , if it exists.
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      ℝ    3   


    𝑓    ∶    ℝ    →    ℝ  


    𝑓    (    𝑥    )    =    2      𝑥    2     −    6  


    𝑓    ∶      ℝ    𝑛     →      ℝ    𝑚   


    𝑚  


    𝑛  


    (    𝑥    ,    𝑦    ,    𝑧    )    ∈      ℝ    3   


      𝑥    2     +      𝑦    2     =    1    ?  


    (    3    ,    2    ,    −    2    )  


    𝑥    𝑦  


    𝑥  


    u    =    ⟨      𝑢    1     ,      𝑢    2     ,    …    ,      𝑢    𝑛     ⟩  


    v    =    ⟨      𝑣    1     ,      𝑣    2     ,    …    ,      𝑣    𝑛     ⟩  


    ⋅  


    u    =    ⟨    1    ,    1    ,    4    ⟩  


    v    =    ⟨      −    3     ,      −    1     ,    1    ⟩  


    u    =    ⟨      𝑢    1     ,      𝑢    2     ,      𝑢    3     ⟩  


    v    =    ⟨      𝑣    1     ,      𝑣    2     ,      𝑣    3     ⟩  


    u    ×    v    =    �  


    ⟨    1    ,    2    ,    0    ⟩    ×    ⟨    3    ,      −    1     ,    0    ⟩  


      ℝ    2   


    𝑃    =    (    1    ,    0    ,    2    )  


    𝑄    =    (    −    2    ,    1    ,    1    )  


    (    1    ,    10    ,    100    )  


    r    (    𝑡    )    =    ⟨    1    ,    4    ,    −    3    ⟩    𝑡    +    ⟨    0    ,    −    1    ,    1    ⟩  


    n  


    𝑦    −    𝑧    =    −    2  


    𝑥    −    𝑦    =    0  


    𝑃    =    (    −    8    ,    0    ,    2    )  


    𝑥    ,    𝑦    ,  


    𝑧  


    𝑥    =      𝑧    2     +      𝑦    2   


    ℓ    (    𝑡    )    =    ⟨    2    𝑡    +    1    ,    3    −    𝑡    ,    𝑡    −    1    ⟩    ,      −    ∞    ≤    𝑡    ≤    ∞  


    𝑡  


    𝐶  


    r  


      r    1     (    𝑡    )    =    ⟨    cos    (    𝑡    )    ,    sin    (    𝑡    )    ,    𝑡    ⟩  


      r    2     (    𝑡    )    =    ⟨    cos    (    2    𝑡    )    ,    sin    (    2    𝑡    )    ,    2    𝑡    ⟩  


    [    0    ,    2    𝜋    ]  


        lim      𝑡    →    𝑒      ⟨      𝑡    2     ,    2    ,    ln    (    𝑡    )    ⟩   


    r    (    𝑡    )    =    𝑡    i    −        1        𝑡    2     −    4       j    +    sin    (    𝑡    )    k  


    r    (    𝑡    )    =    ⟨    2    𝑡    −      1    2       𝑡    2     +    1    ,    𝑡    −    1    ⟩  


      r    ′     (    𝑡    )  


    r    (    𝑡    )  


    ‖      r    ′     (    𝑡    )    ‖  


      r    ″     (    𝑡    )  


    𝑡    =    2  


        ∫    0    1     ⟨    𝑡    ,      𝑒      2    𝑡      ,      sec    2     (    𝑡    )    ⟩      𝑑    𝑡   


    v    (    𝑡    )    =    ⟨    −    200      sin    (    2    𝑡    )    ,    200      cos    (    𝑡    )    ,    400    −      400      1    +    𝑡      ⟩      𝑚    /    𝑠    .  


    r    (    0    )    =    ⟨    0    ,    0    ,    0    ⟩  


    r    (    𝑡    )    =    ⟨    𝑥    (    𝑡    )    ,    𝑦    (    𝑡    )    ,    𝑧    (    𝑡    )    ⟩  


    r    (    𝑡    )    =    ⟨    2      cos    (    𝑡    )    ,    2      sin    (    𝑡    )    ⟩    ,  


    0    ≤    𝑡    ≤    2    𝜋  


    𝑡    =    0  


    𝑡    =    𝜋  


    𝐿    =    �  


    r    (    𝑡    )    =    𝑡    i    +      𝑡    2     j    +      𝑡    3     k  


    (    1    ,    1    ,    1    )  


    (    2    ,    4    ,    8    )  


    r    (    𝑡    )    =    ⟨    ln    (    𝑡    )    ,      2     𝑡    ,      1    2       𝑡    2     ⟩    ,      𝑡    >    0  


    𝑡    =    1  


      𝑡    0   


    𝑠    (    𝑡    )    =    �  


    𝑠  


    𝑠    =    0  


    𝑠    =    1  


    4  


    r    (    𝑡    )    =    ⟨    4      cos    (    𝑡    )    ,    4      sin    (    𝑡    )    ⟩    ,    0    ≤    𝑡    ≤    2    𝜋  


    T  


    𝜅    (    𝑠    )    =  


    (    0    ,    0    )  


    r    (    𝑠    )    =      ⟨    4      cos        (      𝑠    4     )     ,    4      sin        (      𝑠    4     )     ⟩     ,      0    ≤    𝑠    ≤    8    𝜋    .  


    T    (    𝑠    )  


    𝜅    (    𝑠    )  


    N    (    𝑠    )    =  


    T    (    𝑡    )    =  


    𝜅    (    𝑡    )    =  


    N    (    𝑡    )    =  


    T    ,    N    ,    𝜅  


    r    (    𝑡    )    =    ⟨    2      cos    (    𝑡    )    ,    2      sin    (    𝑡    )    ,    𝑡    −    1    ⟩  


    (    𝑥    ,    𝑦    )  


    𝐷  


    𝑓    (    𝑥    ,    𝑦    )  


    𝑓    ∶    𝐷    →    ℝ    ,     where     𝐷    ⊆      ℝ    2   


    𝑓    (    𝑥    ,    𝑦    )    =      𝑥    2     +      𝑦    2     ,      𝑔    (    𝑥    ,    𝑦    )    =    ln    (    𝑥    +    𝑦    )    ,      ℎ    (    𝑥    ,    𝑦    )    =    ℎ    (    𝑥    ,    𝑦    )    =        4    −      𝑥    2     −      𝑦    2       .  


    𝑓    ,    𝑔  


    ℎ  


    𝑓    (    𝑥    ,    𝑦    )    =      𝑥    2     +      𝑦    2     ,    𝑔    (    𝑥    ,    𝑦    )    =    ln    (    𝑥    +    𝑦    )    ,  


    ℎ    (    𝑥    ,    𝑦    )    =        4    −      𝑥    2     −      𝑦    2     


    𝑓  


    (    𝑥    ,    𝑦    ,    𝑧    )  


    𝑧    =    𝑓    (    𝑥    ,    𝑦    )  


    ℎ    (    𝑥    ,    𝑦    )    =    4    −        1    4        𝑥    2     −        1    4        𝑦    2   


    𝑘  


    𝑓    (    𝑥    ,    𝑦    )    =      𝑥    2     −      𝑦    2   


    𝑔    (    𝑥    ,    𝑦    )    =        16    −    4      𝑥    2     −      𝑦    2     


    𝑧    =    𝑓    (    𝑥    ,    𝑦    )    =    4    −    2    𝑥    −      𝑦    2   


    𝑓    (    𝑥    ,    𝑦    ,    𝑧    )  


    𝑓    ∶    𝐷    →    ℝ    ,     where     𝐷    ⊆      ℝ    3   


    𝑓    (    𝑥    ,    𝑦    ,    𝑧    )    =        1      4    −      𝑥    2     −      𝑦    2     −      𝑧    2      


    𝑔    (    𝑥    ,    𝑦    ,    𝑧    )    =    2      𝑥    2     +      𝑦    2     +      𝑧    2   


        lim      (    𝑥    ,    𝑦    )    →    (      𝑥    0     ,      𝑦    0     )        𝑓    (    𝑥    ,    𝑦    )    =    𝐿   


    (      𝑥    0     ,      𝑦    0     )  


        lim      (    𝑥    ,    𝑦    )    →    (    2    ,    0    )                2    𝑥    −    𝑦      −    2       2    𝑥    −    𝑦    −    4     


$\R ^3$


$f:\R \to \R $


$f(x)=2x^2-6$


$f:\R ^n \to \R ^m$


$m$


$n$


$(x,y,z)\in \R ^3$


\begin {equation*}x^2+y^2=1?\end {equation*}


$(3,2,-2)$


$xy$


$x$


$\bu =\langle u_1,u_2,\ldots ,u_n\rangle $


$\bv =\langle v_1,v_2,\ldots ,v_n\rangle $


\begin {equation*}\bu \dotp \bv = \blank {10cm}\end {equation*}


$\bu =\vecthree {1}{1}{4}$


$\bv =\vecthree {-3}{-1}{1}$


$\bu =\langle u_1,u_2,u_3\rangle $


$\bv =\langle v_1,v_2,v_3\rangle $


\begin {equation*}\bu \times \bv = \blank {10cm}\end {equation*}


$\vecthree {1}{2}{0}\times \vecthree {3}{-1}{0}$


$\R ^2$


$P=(1,0,2)$


$Q=(-2,1,1)$


$\R ^3$


$\R ^3$


$(1,10,100)$


\begin {equation*}\br (t)=\langle 1,4,-3\rangle t +\langle 0,-1,1\rangle \end {equation*}


$\R ^3$


$\bn $


$\R ^3$


$\R ^3$


$y-z=-2$


$x-y=0$


$P=(-8,0,2)$


$\R ^3$


$x,y,$


$z$


$x=z^2+y^2$


\begin {equation*}\ell (t)=\langle 2t+1,3-t,t-1\rangle , \quad -\infty \leq t\leq \infty \end {equation*}


$\R ^2$


$\R ^3$


$t$


$C$


$\br $


$C$


$C$


$\br $


$C$


$\br _1(t)=\langle \cos (t),\sin (t),t\rangle $


$\br _2(t)=\langle \cos (2t),\sin (2t),2t\rangle $


$[0,2\pi ]$


$\displaystyle \lim _{t\to e} \langle t^2,2,\ln (t)\rangle $


$\br (t)=t\bi -\dfrac {1}{t^2-4}\bj +\sin (t)\bk $


$\br (t)=\langle 2t-\frac {1}{2}t^2+1,t-1\rangle $


$\br '(t)$


$\br (t)$


$t$


$\br '(t)$


$\|\br '(t)\|$


$\br ''(t)$


$\br (t)=\langle 2t-\frac {1}{2}t^2+1,t-1\rangle $


$t=2$


$\displaystyle \int _0^1 \langle t, e^{2t},\sec ^2(t)\rangle \ dt$


\begin {equation*}\bv (t)=\langle -200\sin (2t), 200\cos (t), 400-\frac {400}{1+t} \rangle \ m/s.\end {equation*}


$\br (0)=\langle 0,0,0\rangle $


$\br (t)=\langle x(t),y(t),z(t)\rangle $


$t$


\begin {equation*}\br (t)=\langle 2\cos (t), 2\sin (t) \rangle ,\end {equation*}


$0\leq t \leq 2\pi $


$t=0$


$t=\pi $


$\br (t)=\langle x(t),y(t),z(t)\rangle $


\begin {equation*}L=\blank {8cm}\end {equation*}


$\br (t)=t\bi +t^2\bj +t^3\bk $


$(1,1,1)$


$(2,4,8)$


\begin {equation*}\br (t)=\langle \ln (t),\sqrt {2}t,\frac {1}{2}t^2\rangle , \qquad t>0\end {equation*}


$t=1$


$t=2$


$t_0$


$t$


\begin {equation*}s(t)=\blank {8cm}\end {equation*}


$s$


$s=0$


$s=1$


$4$


$\R ^2$


$\br (t)=\langle 4\cos (t),4\sin (t)\rangle , 0\leq t\leq 2\pi $


$\bT $


$s$


$t$


$\kappa (s)=$


$(0,0)$


$\R ^2$


\begin {equation*}\br (s)=\left \langle 4\cos \left (\frac {s}{4}\right ),4\sin \left (\frac {s}{4}\right )\right \rangle , \qquad 0\leq s\leq 8\pi .\end {equation*}


$\bT (s)$


$\kappa (s)$


$\bT $


$\bN (s)=$


$\br (t)$


$\bT (t)=$


$\kappa (t)=$


$\bN (t)=$


$\bT , \bN , \kappa $


$\br (t)=\langle 2\cos (t),2\sin (t),t-1\rangle $


$(x,y)$


$D$


$f(x,y)$


\begin {equation*}f: D \to \R , \text { where } D \subseteq \R ^2\end {equation*}


\begin {equation*}f(x,y) = x^2+y^2, \qquad g(x,y)=\ln (x+y), \qquad h(x,y)=h(x,y)=\sqrt {4-x^2-y^2}.\end {equation*}


$f, g$


$h$


$f(x,y)=x^2+y^2, g(x,y)=\ln (x+y),$


$h(x,y)=\sqrt {4-x^2-y^2}$


$f$


$D$


$f$


$(x,y,z)$


$\R ^3$


$z = f(x,y)$


$(x,y)$


$D$


$h(x,y) = 4-\dfrac {1}{4}x^2-\dfrac {1}{4}y^2$


$(x,y)$


$f$


$k$


$f$


$z$


$f(x,y) = x^2-y^2$


$z=x^2-y^2$


$g(x,y) = \sqrt {16-4x^2-y^2}$


$z=f(x,y) = 4-2x-y^2$


$(x,y,z)$


$D$


$f(x,y,z)$


\begin {equation*}f: D \to \R , \text { where } D \subseteq \R ^3\end {equation*}


$f(x,y,z)=\dfrac {1}{4-x^2-y^2-z^2}$


$g(x,y,z)=2x^2+y^2+z^2$


$\displaystyle \lim _{(x,y)\to (x_0,y_0)}f(x,y)=L$


$f(x,y)$


$(x_0,y_0)$


$f(x,y)$


$(x_0,y_0)$


$\displaystyle \lim _{(x,y)\to (2,0)} \dfrac {\sqrt {2x-y}-2}{2x-y-4}$

