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Subspace Codes

Grassmannian:
G,(k,n) = {k-dim. F,-subspaces of F.}

Constant dimension subspace code:

A collection of k-dimensional Fq—subspaces of ]Fqn, i.e.C C gq(k, n)

Subspace distance:

d (U, V) = dim(¥) + dim(V) — 2dim(% N V)
dy(€) = min {d(U, V) | U #V}

= If dim(U) =dim(V) =k, d,(U&, V) = 2k —2dim(U NV) is even.
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Cyclic Orbit Codes

The cyclic (Singer) subgroup S = Fy, < GL,(g) acts on G (k, n) by multiplication: for any
o € Iy,
all := {au|uel}.

A cyclic orbit code is the orbit of a single subspace under this action
€ = Orbg(U) = {all | x € F }.
The stabilizer of a subspace is always the multiplicative group of a subfield
Stabg(U) = Fy:, for some t | ged(n, k).
Goal: Find finer invariant for optimal cyclic orbit codes:

|Orb5(2[)|=qq—_11 and  d,(Orbo(ll)) = 2k — 2.
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Projective Spaces

Projective space:

]P(IFqn) == ]F;n/ ~,

where ~ is the equivalence relation defined by
a
a~b& 3 eF,.

Projective subspace: For any U € G,(k, n), define

P(U) = (UNA{0})/ ~

Notation: We write @ for the equivalence class of a in P(F,.).
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Distributions

Distance distribution of a subspace code C:

(8. 61, 81, 8q),
where §; counts the number of pairs (i, V) € € x € such that d (&, V) = i.

Weight distribution of an orbit code € with generator U:

(dO' d2' T d2k—2' de)'

where d; counts the number of subspaces V € € such that d (%, V) = L.

Intersection distribution of a cyclic orbit code € with generator I:

(Y0, A1 Ag),

where A; = |£| = [{a € P(F.) | dim(U Nall) = i}|.
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Simplest case: spread codes

Spread code:
EachW € G,(n, 1)is contained in exactly one & € €

Equivalently, for 2,V € C:

unv ={0} and U u=r,.
UueC

= dy(Orbg(U)) = 2k = Stab(U/) = F;, and Orbg(¥)is a spread code
= Intersection distribution is a single entry:
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Distance distribution for full-length orbit codes

Theorem (Gluesing-Luerssen,L.). Let C = Orbg(U) have full-length orbit with d,(C) = 2k — 2¢
and recall £; = {& € P(F.) | dim(U Nall) = i}. Then

e
¢ {@v) |u£veP))} 4
i=1
by ¢(u,v) = uv=t is well-defined, surjective, and @ € £, & |¢p~1(a)| = (5—;11'

= Key Idea: If dim(& Nall) > 1, we can write @ = ¥ for each equivalence class u for
ueldnal.

Corollary (Gluesing-Luerssen,L.). Let U have full-length orbit and d,(Orbg(U)) = 2k — 2€. Then

i(q"—1>/\_:qk—1qk—q
~\g-1)" g-1gqg-1

Corollary (Gluesing-Luerssen,L.). Let Orbgs(&) be an optimal cyclic orbit code. Then Orb(U) has
intersection distribution (Aq, A;), where
gc—1q¢"—g¢q y a1 g“—1q"—g¢q

0=

=T 1 g—1 1 —1 qg—1
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Full length orbits with smaller minimum distance

Theorem (Gluesing-Luerssen, L.). Let U have full-length orbit and d,(Orbg(U)) = 2k — 4. Then
the intersection distribution of [ depends only on g, n, k, and a new parameter r describing the
orbits of the 2-dimensional intersections U N ol{.

= Proof uses group actions, structure of small dimensional intersections, previous Corollary.
= The theorem does not hold if d,(Orbg(&)) < 2k — 6.
= General behavior of intersection distribution for d,(Orbg(X)) < 2k — 6 is open.
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Example with d (C) =2k — 4

qg=2,n=8,k=3: Fix a generator w for F}; and take U = (1, 0%, 0'").

= Corollary: q_llq =X +‘72 1)\
= 42 =), +3A,

= Q: What can we learn about V = U N all such that dim(V) = 27
Case 1: V =Fy
- @ € P(F2)\ {1} = {®, 07}
Case 2: V has full-length orbit, e.g. V = (1, ")
— 2 possibilities for @ e.g. @ € {7, w238}
— Also, o ¥V = U N Y and w28V = U N w238,
— r counts the number of these sets (e.g. {V, 0 ¥V, w=238V}) of related V
= A, =q+rq(g+1)=2+2(2)2+1)=14
= A =42-3),=0
= d=2= 1) — A, =240

g—1
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Thank you.
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	Introduction and Motivation
	Weight Distributions


     𝒢  𝑞   (  𝑘  ,  𝑛  )  =  {      𝑘  -dim.       𝔽  𝑞   -subspaces of       𝔽    𝑞  𝑛      } 


    A collection of     𝑘  -dimensional       𝔽  𝑞   -subspaces of       𝔽    𝑞  𝑛    , i.e.     𝒞  ⊆    𝒢  𝑞   (  𝑘  ,  𝑛  ) 


             d  s   (  𝒰  ,  𝒱  )     =   dim   (  𝒰  )  +   dim   (  𝒱  )  −  2     dim   (  𝒰  ∩  𝒱  )            d  s   (  𝒞  )     =     min     𝒰  ,  𝒱  ∈  𝒞    {  d  (  𝒰  ,  𝒱  )  ∣  𝒰  ≠  𝒱  }    


    dim   (  𝒰  )  =   dim   (  𝒱  )  =  𝑘 


     d  s   (  𝒰  ,  𝒱  )  =  2  𝑘  −  2     dim   (  𝒰  ∩  𝒱  ) 


   𝑆  =    𝔽    𝑞  𝑛   ∗   ≤     GL   𝑛   (  𝑞  ) 


     𝒢  𝑞   (  𝑘  ,  𝑛  ) 


   𝛼  ∈    𝔽    𝑞  𝑛   ∗  


   𝛼  𝒰  ∶  =  {  𝛼  𝑢  ∣  𝑢  ∈  𝒰  }  . 


   𝒞  =     Orb   𝑆   (  𝒰  )  =  {  𝛼  𝒰  ∣  𝛼  ∈    𝔽    𝑞  𝑛   ∗   }  . 


      Stab   𝑆   (  𝒰  )  =    𝔽    𝑞  𝑡   ∗   ,     for some     𝑡  ∣   gcd   (  𝑛  ,  𝑘  )    . 


   |     Orb   𝑆   (  𝒰  )  |  =        𝑞  𝑛   −  1     𝑞  −  1       and       d  s   (     Orb   𝑆   (  𝒰  )  )  =  2  𝑘  −  2  . 


   ℙ  (    𝔽    𝑞  𝑛    )  =    𝔽    𝑞  𝑛   ∗   /  ∼  , 


   ∼ 


   𝑎  ∼  𝑏  ⇔    𝑎  𝑏   ∈    𝔽  𝑞  ∗   . 


   𝒰  ∈    𝒢  𝑞   (  𝑘  ,  𝑛  ) 


   ℙ  (  𝒰  )  =  (  𝒰  ∖  {  0  }  )  /  ∼ 


     𝛼  ‾  


   𝛼 


   ℙ  (    𝔽    𝑞  𝑛    ) 


   𝒞 


   (    𝛿  0   ,    𝛿  1   ,  …  ,    𝛿    𝑑  −  1    ,    𝛿  𝑑   )  , 


     𝛿  𝑖  


   (  𝒰  ,  𝒱  )  ∈  𝒞  ×  𝒞 


     d  s   (  𝒰  ,  𝒱  )  =  𝑖  . 


   𝒰 


   (    𝑑  0   ,    𝑑  2   ,  …  ,    𝑑    2  𝑘  −  2    ,    𝑑    2  𝑘    )  , 


     𝑑  𝑖  


   𝒱  ∈  𝒞 


   (    𝜆  0   ,    𝜆  1   ,  …  ,    𝜆  ℓ   )  , 


     𝜆  𝑖   =  |    ℒ  𝑖   |  =  |  {    𝛼  ‾   ∈  ℙ  (    𝔽    𝑞  𝑛    )  ∣   dim   (  𝒰  ∩  𝛼  𝒰  )  =  𝑖  }  | 


    Each     𝒲  ∈    𝒢  𝑞   (  𝑛  ,  1  )     is contained in exactly one       𝒰  ∈  𝒞 


   𝒰  ,  𝒱  ∈  𝒞 


   𝒰  ∩  𝒱  =  {  0  }     and       ⋃    𝒰  ∈  𝒞    𝒰  =    𝔽    𝑞  𝑛    . 


     d  s   (     Orb   𝑆   (  𝒰  )  )  =  2  𝑘  ⇒   Stab   (  𝒰  )  =    𝔽    𝑞  𝑘   ∗      and          Orb   𝑆   (  𝒰  )     is a spread code  


     𝜆  0   =        𝑞  𝑛   −    𝑞  𝑘      𝑞  −  1    . 


   𝒞  =     Orb   𝑆   (  𝒰  ) 


     d  s   (  𝒞  )  =  2  𝑘  −  2  ℓ 


     ℒ  𝑖   =  {    𝛼  ‾   ∈  ℙ  (    𝔽    𝑞  𝑛    )  ∣   dim   (  𝒰  ∩  𝛼  𝒰  )  =  𝑖  } 


   𝜓  ∶  {  (    𝑢  ‾   ,    𝑣  ‾   )  ∣    𝑢  ‾   ≠    𝑣  ‾   ∈  ℙ  (  𝒰  )  )  }  →    ⋃    𝑖  =  1   ℓ     ℒ  𝑖  


   𝜓  (    𝑢  ‾   ,    𝑣  ‾   )  =      𝑢    𝑣    −  1     ‾  


     𝛼  ‾   ∈    ℒ  𝑖   ⇔  |    𝜓    −  1    (    𝛼  ‾   )  |  =        𝑞  𝑖   −  1     𝑞  −  1   


    dim   (  𝒰  ∩  𝛼  𝒰  )  ≥  1 


     𝛼  ‾   =      𝑢  𝑣   ‾  


     𝑢  ‾  


   𝑢  ∈  𝒰  ∩  𝛼  𝒰 


     d  s   (     Orb   𝑆   (  𝒰  )  )  =  2  𝑘  −  2  ℓ 


     ∑    𝑖  =  1   ℓ     (        𝑞  𝑖   −  1     𝑞  −  1    )       𝜆  𝑖   =        𝑞  𝑘   −  1     𝑞  −  1          𝑞  𝑘   −  𝑞     𝑞  −  1    . 


      Orb   𝑆   (  𝒰  ) 


    Orb   (  𝒰  ) 


   (    𝜆  0   ,    𝜆  1   ) 


     𝜆  1   =        𝑞  𝑘   −  1     𝑞  −  1          𝑞  𝑘   −  𝑞     𝑞  −  1    ,      𝜆  0   =        𝑞  𝑛   −  1     𝑞  −  1    −  1  −        𝑞  𝑘   −  1     𝑞  −  1          𝑞  𝑘   −  𝑞     𝑞  −  1    . 


     d  s   (     Orb   𝑆   (  𝒰  )  )  =  2  𝑘  −  4 


   𝑞  ,  𝑛  ,  𝑘 


   𝑟 


   𝒰  ∩  𝛼  𝒰 


     d  s   (     Orb   𝑆   (  𝒰  )  )  ≤  2  𝑘  −  6 


   𝑞  =  2  ,  𝑛  =  8  ,  𝑘  =  3 


   𝜔 


     𝔽    2  8   ∗  


   𝒰  =  ⟨  1  ,    𝜔   85    ,    𝜔   17    ⟩ 


         𝑞  𝑘   −  1     𝑞  −  1          𝑞  𝑘   −  𝑞     𝑞  −  1    =    𝜆  1   +        𝑞  2   −  1     𝑞  −  1      𝜆  2  


    42   =    𝜆  1   +  3    𝜆  2  


   𝒱  =  𝒰  ∩  𝛼  𝒰 


    dim   (  𝒱  )  =  2 


   𝒱  =    𝔽    2  2   


     𝛼  ‾   ∈  ℙ  (    𝔽  2  2   )  ∖  {    1  ‾   }  =  {      𝜔   85    ‾   ,      𝜔   170    ‾   } 


   𝒱 


   𝒱  =  ⟨  1  ,    𝜔   17    ⟩ 


     𝛼  ‾   ∈  {      𝜔   187    ‾   ,      𝜔   238    ‾   } 


     𝜔    −   187     𝒱  =  𝒰  ∩    𝜔    −   187     𝒰 


     𝜔    −   238     𝒱  =  𝒰  ∩    𝜔    −   238     𝒰 


   {  𝒱  ,    𝜔    −   187     𝒱  ,    𝜔    −   238     𝒱  } 


     𝜆  2   =  𝑞  +  𝑟  𝑞  (  𝑞  +  1  )  =  2  +  2  (  2  )  (  2  +  1  )  =   14  


     𝜆  1   =   42   −  3    𝜆  2   =  0 


     𝜆  0   =        𝑞  𝑛   −  1     𝑞  −  1    −  1  −    𝜆  1   −    𝜆  2   =   240  


     d  s   (  𝒞  )  =  2  𝑘  −  4 



