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Subspace Codes

Grassmannian:
𝒢𝑞(𝑘, 𝑛) = {𝑘-dim. 𝔽𝑞-subspaces of 𝔽𝑞𝑛}

Constant dimension subspace code:

A collection of 𝑘-dimensional 𝔽𝑞-subspaces of 𝔽𝑞𝑛 , i.e. 𝒞 ⊆ 𝒢𝑞(𝑘, 𝑛)

Subspace distance:

ds(𝒰, 𝒱) = dim(𝒰) + dim(𝒱) − 2 dim(𝒰 ∩ 𝒱)
ds(𝒞) = min

𝒰,𝒱∈𝒞
{d(𝒰, 𝒱) ∣ 𝒰 ≠ 𝒱}

• If dim(𝒰) = dim(𝒱) = 𝑘, ds(𝒰, 𝒱) = 2𝑘 − 2 dim(𝒰 ∩ 𝒱) is even.



Cyclic Orbit Codes

The cyclic (Singer) subgroup 𝑆 = 𝔽∗
𝑞𝑛 ≤ GL𝑛(𝑞) acts on 𝒢𝑞(𝑘, 𝑛) by multiplication: for any 

𝛼 ∈ 𝔽∗
𝑞𝑛 ,

𝛼𝒰 ∶= {𝛼𝑢 ∣ 𝑢 ∈ 𝒰}.

A cyclic orbit code is the orbit of a single subspace under this action

𝒞 = Orb𝑆(𝒰) = {𝛼𝒰 ∣ 𝛼 ∈ 𝔽∗
𝑞𝑛}.

The stabilizer of a subspace is always the multiplicative group of a subfield

Stab𝑆(𝒰) = 𝔽∗
𝑞𝑡 , for some 𝑡 ∣ gcd(𝑛, 𝑘).

Goal: Find finer invariant for optimal cyclic orbit codes:

| Orb𝑆(𝒰)| = 𝑞𝑛 − 1
𝑞 − 1 and ds(Orb𝑆(𝒰)) = 2𝑘 − 2.



Projective Spaces

Projective space:
ℙ(𝔽𝑞𝑛) = 𝔽∗

𝑞𝑛/ ∼,

where ∼ is the equivalence relation defined by

𝑎 ∼ 𝑏 ⇔ 𝑎
𝑏 ∈ 𝔽∗

𝑞 .

Projective subspace: For any 𝒰 ∈ 𝒢𝑞(𝑘, 𝑛), define

ℙ(𝒰) = (𝒰 ∖ {0})/ ∼

Notation: We write 𝛼 for the equivalence class of 𝛼 in ℙ(𝔽𝑞𝑛).
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Distributions
Distance distribution of a subspace code 𝒞:

(𝛿0, 𝛿1, … , 𝛿𝑑−1, 𝛿𝑑),

where 𝛿𝑖 counts the number of pairs (𝒰, 𝒱) ∈ 𝒞 × 𝒞 such that ds(𝒰, 𝒱) = 𝑖.

Weight distribution of an orbit code 𝒞 with generator 𝒰:

(𝑑0, 𝑑2, … , 𝑑2𝑘−2, 𝑑2𝑘),

where 𝑑𝑖 counts the number of subspaces 𝒱 ∈ 𝒞 such that ds(𝒰, 𝒱) = 𝑖.

Intersection distribution of a cyclic orbit code 𝒞 with generator 𝒰:

(𝜆0, 𝜆1, … , 𝜆ℓ),

where 𝜆𝑖 = |ℒ𝑖| = |{𝛼 ∈ ℙ(𝔽𝑞𝑛) ∣ dim(𝒰 ∩ 𝛼𝒰) = 𝑖}|.



Simplest case: spread codes

Spread code:
Each 𝒲 ∈ 𝒢𝑞(𝑛, 1) is contained in exactly one 𝒰 ∈ 𝒞

Equivalently, for 𝒰, 𝒱 ∈ 𝒞:

𝒰 ∩ 𝒱 = {0} and ⋃
𝒰∈𝒞

𝒰 = 𝔽𝑞𝑛 .

• ds(Orb𝑆(𝒰)) = 2𝑘 ⇒ Stab(𝒰) = 𝔽∗
𝑞𝑘 and Orb𝑆(𝒰) is a spread code

• Intersection distribution is a single entry:

𝜆0 = 𝑞𝑛 − 𝑞𝑘

𝑞 − 1 .



Distance distribution for full-length orbit codes

Theorem  (Gluesing-Luerssen,L.). Let 𝒞 = Orb𝑆(𝒰) have full-length orbit with ds(𝒞) = 2𝑘 − 2ℓ
and recall ℒ𝑖 = {𝛼 ∈ ℙ(𝔽𝑞𝑛) ∣ dim(𝒰 ∩ 𝛼𝒰) = 𝑖}. Then

𝜓 ∶ {(𝑢, 𝑣) ∣ 𝑢 ≠ 𝑣 ∈ ℙ(𝒰))} →
ℓ

⋃
𝑖=1

ℒ𝑖

by 𝜓(𝑢, 𝑣) = 𝑢𝑣−1 is well-defined, surjective, and 𝛼 ∈ ℒ𝑖 ⇔ |𝜓−1(𝛼)| = 𝑞𝑖−1
𝑞−1 .
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• Key Idea: If dim(𝒰 ∩ 𝛼𝒰) ≥ 1, we can write 𝛼 = 𝑢
𝑣  for each equivalence class 𝑢 for 

𝑢 ∈ 𝒰 ∩ 𝛼𝒰.
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Corollary  (Gluesing-Luerssen,L.). Let 𝒰 have full-length orbit and ds(Orb𝑆(𝒰)) = 2𝑘 − 2ℓ. Then

ℓ
∑
𝑖=1

(𝑞𝑖 − 1
𝑞 − 1 ) 𝜆𝑖 = 𝑞𝑘 − 1

𝑞 − 1
𝑞𝑘 − 𝑞
𝑞 − 1 .



Distance distribution for full-length orbit codes

Theorem  (Gluesing-Luerssen,L.). Let 𝒞 = Orb𝑆(𝒰) have full-length orbit with ds(𝒞) = 2𝑘 − 2ℓ
and recall ℒ𝑖 = {𝛼 ∈ ℙ(𝔽𝑞𝑛) ∣ dim(𝒰 ∩ 𝛼𝒰) = 𝑖}. Then

𝜓 ∶ {(𝑢, 𝑣) ∣ 𝑢 ≠ 𝑣 ∈ ℙ(𝒰))} →
ℓ

⋃
𝑖=1

ℒ𝑖

by 𝜓(𝑢, 𝑣) = 𝑢𝑣−1 is well-defined, surjective, and 𝛼 ∈ ℒ𝑖 ⇔ |𝜓−1(𝛼)| = 𝑞𝑖−1
𝑞−1 .

Corollary  (Gluesing-Luerssen,L.). Let Orb𝑆(𝒰) be an optimal cyclic orbit code. Then Orb(𝒰) has 
intersection distribution (𝜆0, 𝜆1), where

𝜆1 = 𝑞𝑘 − 1
𝑞 − 1

𝑞𝑘 − 𝑞
𝑞 − 1 , 𝜆0 = 𝑞𝑛 − 1

𝑞 − 1 − 1 − 𝑞𝑘 − 1
𝑞 − 1

𝑞𝑘 − 𝑞
𝑞 − 1 .



Full length orbits with smaller minimum distance

Theorem  (Gluesing-Luerssen, L.). Let 𝒰 have full-length orbit and ds(Orb𝑆(𝒰)) = 2𝑘 − 4. Then 
the intersection distribution of 𝒰 depends only on 𝑞, 𝑛, 𝑘, and a new parameter 𝑟 describing the 
orbits of the 2-dimensional intersections 𝒰 ∩ 𝛼𝒰.

• Proof uses group actions, structure of small dimensional intersections, previous Corollary.
• The theorem does not hold if ds(Orb𝑆(𝒰)) ≤ 2𝑘 − 6.
• General behavior of intersection distribution for ds(Orb𝑆(𝒰)) ≤ 2𝑘 − 6 is open.
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Example with ds(𝒞) = 2𝑘 − 4
𝑞 = 2, 𝑛 = 8, 𝑘 = 3: Fix a generator 𝜔 for 𝔽∗

28 and take 𝒰 = ⟨1, 𝜔85, 𝜔17⟩.
• Corollary: 𝑞𝑘−1

𝑞−1
𝑞𝑘−𝑞
𝑞−1 = 𝜆1 + 𝑞2−1

𝑞−1 𝜆2

• 42 = 𝜆1 + 3𝜆2

• Q: What can we learn about 𝒱 = 𝒰 ∩ 𝛼𝒰 such that dim(𝒱) = 2? 

Case 1: 𝒱 = 𝔽22

– 𝛼 ∈ ℙ(𝔽2
2 ) ∖ {1} = {𝜔85, 𝜔170}

Case 2: 𝒱 has full-length orbit, e.g. 𝒱 = ⟨1, 𝜔17⟩
– 2 possibilities for 𝛼 e.g. 𝛼 ∈ {𝜔187, 𝜔238}
– Also, 𝜔−187𝒱 = 𝒰 ∩ 𝜔−187𝒰 and 𝜔−238𝒱 = 𝒰 ∩ 𝜔−238𝒰.
– 𝑟 counts the number of these sets (e.g. {𝒱, 𝜔−187𝒱, 𝜔−238𝒱}) of related 𝒱

• 𝜆2 = 𝑞 + 𝑟𝑞(𝑞 + 1) = 2 + 2(2)(2 + 1) = 14
• 𝜆1 = 42 − 3𝜆2 = 0
• 𝜆0 = 𝑞𝑛−1

𝑞−1 − 1 − 𝜆1 − 𝜆2 = 240
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Thank you. 
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