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Subspace Codes

Grassmannian:
G,(k,n) = {k-dim. F,-subspaces of F.}

Constant dimension subspace code:

A collection of k-dimensional Fq—subspaces of ]Fqn, i.e.C C gq(k, n)

Subspace distance:

d (U, V) = dim(¥) + dim(V) — 2dim(% N V)
dy(€) = min {d(U, V) | U #V}

= If dim(U) =dim(V) =k, d,(U&, V) = 2k —2dim(U NV) is even.



Cyclic Orbit Codes

The cyclic (Singer) subgroup S = Fy, < GL,(g) acts on G (k, n) by multiplication: for any
o € Iy,
all := {au|uel}.

A cyclic orbit code is the orbit of a single subspace under this action
€ = Orbg(U) = {all | x € F }.
The stabilizer of a subspace is always the multiplicative group of a subfield
Stabg(U) = Fy:, for some t | ged(n, k).
Goal: Find finer invariant for optimal cyclic orbit codes:

n

q_

and d,(Orbg(U)) =2k — 2.

| Orbs(U)| =



Projective Spaces

Projective space:

]P(IFqn) == ]F‘;kn/ ~,

where ~ is the equivalence relation defined by

a~be ;R



Projective Spaces

Projective space:

]P(IFqn) == ]F;n/ ~,
where ~ is the equivalence relation defined by
a~be ;R

Projective subspace: For any U € G,(k, n), define

P(U) = (UNA{0})/ ~

Notation: We write @ for the equivalence class of a in P(F,.).



Distributions

Distance distribution of a subspace code C:

(8. 61, 81, 8q),
where §; counts the number of pairs (i, V) € € x € such that d (&, V) = i.

Weight distribution of an orbit code € with generator U:

(dO' d2' T d2k—2' de)'

where d; counts the number of subspaces V € € such that d (%, V) = L.

Intersection distribution of a cyclic orbit code € with generator I:

(Y0, A1 Ag),

where A; = |£| = [{a € P(F.) | dim(U Nall) = i}|.



Simplest case: spread codes

Spread code:
EachW € G,(n, 1)is contained in exactly one & € €

Equivalently, for &,V € C:

unv ={0} and U u=r,.
UueC

= dy(Orbg(U)) = 2k = Stab(U/) = F;, and Orbg(¥)is a spread code
= Intersection distribution is a single entry:




Distance distribution for full-length orbit codes

Theorem (Gluesing-Luerssen,L.). Let € = Orbg(U) have full-length orbit with d,(C) = 2k — 2¢
and recall £; = {& € P(F.) | dim(U Nall) = i}. Then

e
g A{@v) |urveP)} -4
i=1

by ¢(u,v) = uv=t is well-defined, surjective, and @ € £, & |y~ (@)| = L=.



Distance distribution for full-length orbit codes

Theorem (Gluesing-Luerssen,L.). Let € = Orbg(U) have full-length orbit with d,(C) = 2k — 2¢
and recall £; = {& € P(F.) | dim(U Nall) = i}. Then

e
¢ :{(wv)|u+vePU))}—|]4
i=1

by (1, V) = uv! is well-defined, surjective, and @ € £, & |¢~(a)| = L=F.

= Key Idea: If dim(& Nall) > 1, we can write @ = ¥ for each equivalence class u for
uelUnal.



Distance distribution for full-length orbit codes

Theorem (Gluesing-Luerssen,L.). Let C = Orbg(U) have full-length orbit with d,(C) = 2k — 2¢
and recall £; = {a € P(F,.) | dim(U Nall) = i}. Then

¢:{(H.U)|ﬂq&velP’(U))}—>L_J£i

by ¢(u,v) = uv=! is well-defined, surjective, and @ € £, & |y~ (a)| = ‘f;_;ll.

Corollary (Gluesing-Luerssen,L.). Let U have full-length orbit and d,(Orbg(U)) = 2k — 28. Then

i ¢ -1\, _d‘-1d—q
. g—1/) " g—1gqg-1"




Distance distribution for full-length orbit codes

Theorem (Gluesing-Luerssen,L.). Let C = Orbg(U) have full-length orbit with d,(C) = 2k — 2¢
and recall £; = {& € P(F.) | dim(U Nall) = i}. Then

¢4@ﬁﬂﬂ¢ﬁ€Mwn—dJ4

i

by ¢(u,v) = uv=! is well-defined, surjective, and @ € £; & |y~ ()| = ‘Z,_;ll.

Corollary (Gluesing-Luerssen,L.). Let Orbgs(&) be an optimal cyclic orbit code. Then Orb(U) has
intersection distribution (Aq, A;), where

k k k k
—1q¢"— n_1 —1g¢"—
_q-1d-q , _¢ L 919" —gq

g—1qg-—1" g—1 g—1qg—1




Full length orbits with smaller minimum distance

Theorem (Gluesing-Luerssen, L.). Let U have full-length orbit and d,(Orbg(U)) = 2k — 4. Then
the intersection distribution of [ depends only on g, n, k, and a new parameter r describing the
orbits of the 2-dimensional intersections U N ol{.



Full length orbits with smaller minimum distance

Theorem (Gluesing-Luerssen, L.). Let U have full-length orbit and d,(Orbg(U)) = 2k — 4. Then
the intersection distribution of I[ depends only on g, n, k, and a new parameter r describing the
orbits of the 2-dimensional intersections U N ol{ .

= Proof uses group actions, structure of small dimensional intersections, previous Corollary.
= The theorem does not hold if d,(Orbg(&/)) < 2k — 6.
= General behavior of intersection distribution for d,(Orbg(X)) < 2k — 6 is open.



Example with d (C) =2k — 4

q9=2,

n =8, k = 3: Fix a generator w for F} and take & = (1, ®*, @'7).

= Corollary: q 1 q L =N+ ‘72 1)\
= 2=+ 3A
= Q: What can we learn about V = U N all such that dim(V) = 27

-1

- 2 € P(F3)\ {1} = {&%, w70}

— 2 possibilities for @ e.g. @ € {w!%7, w238}
— Also, o ¥V = U N Y and w28V = U N w238,
— r counts the number of these sets (e.g. {V, 0 ¥V, w=238V}) of related V

-1
g—1




Example with d (C) =2k — 4

g=2,n=8,k=3: Fix a generator w for F}; and take &/ = (1, 0%, 0'").

= 42=2; +3)

= Q: What can we learn about V = U N ol such that dim(V) = 27
Case 1: V =Fy

@ e P(F2)\ {1} = {0®, 0!}
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g=2,n=8,k=3: Fix a generator w for F}; and take &/ = (1, 0%, 0'").
= 42 =), +3A,
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M =42-3),=0
do=2=L —1-2 — A, =240

g-—1




Thank you.
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