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MATH 2551-G Exam 3
Fall 2025

EXAM KEY

Read all instructions carefully before beginning. 

• Print your name and GT ID neatly above.

• You have 75 minutes to complete as many problems as you wish to attempt.

• You may not use electronic devices of any kind during the exam. You may not use any 
reference materials other than your single page of hand-written notes you brought to the 
exam.

• The Learning Targets covered by this exam are listed below.

• Show your work. Answers without work shown will receive a Not Yet

• Good luck! Write yourself a message of encouragement on the front page!

Learning Targets
• G1: Lines and Planes. I can describe lines using the vector equation of a line. I can describe 

planes using the general equation of a plane. I can find the equations of planes using a point and 
a normal vector. I can find the intersections of lines and planes. I can describe the relationships 
of lines and planes to each other. I can solve problems with lines and planes.

• G2: Calculus of Curves. I can compute tangent vectors to parametric curves and their 
velocity, speed, and acceleration. I can find equations of tangent lines to parametric curves. I 
can solve initial value problems for motion on parametric curves.

• G3: Geometry of Curves. I can compute the arc length of a curve in two or three dimensions 
and apply arc length to solve problems. I can compute normal vectors and curvature for curves 
in two and three dimensions. I can interpret these objects geometrically and in applications.

• G4: Surfaces. I can identify standard quadric surfaces including: spheres, ellipsoids, elliptic 
paraboloids, hyperboloids, cones, and hyperbolic paraboloids. I can match graphs of functions 
of two variables to their equations and contour plots and determine their domains and ranges.

• G5: Parameterization. I can find parametric equations for common curves, such as line 
segments, graphs of functions of one variable, circles, and ellipses. I can match given parametric 
equations to Cartesian equations and graphs. I can parameterize common surfaces, such as 
planes, quadric surfaces, and functions of two variables.

• D1: Computing Derivatives. I can compute partial derivatives, total derivatives, directional 
derivatives, and gradients. I can use the Chain Rule for multivariable functions to compute 
derivatives of composite functions.

• D2: Tangent Planes and Linear Approximations. I can find equations for tangent planes 
to surfaces and linear approximations of functions at a given point and apply these to solve 
problems.


     𝑝  1  


   5  𝑥  +  3  𝑦  −  2  𝑧  =   91  


   𝑄 


   (  2  ,  1  ,  −  1  ) 


     𝑝  2  


   5  (  𝑥  −  2  )  +  3  (  𝑦  −  1  )  −  2  (  𝑧  +  1  )  =  0     or     5  𝑥  +  3  𝑦  −  2  𝑧  =   15   . 


   ℓ 


   ℓ  (  𝑡  )  =  ⟨  5  ,  3  ,  −  2  ⟩  𝑡  +  ⟨  2  ,  1  ,  −  1  ⟩  . 


   𝑅 


           5  (  5  𝑡  +  2  )  +  3  (  3  𝑡  +  1  )  −  2  (  −  2  𝑡  −  1  )     =   91            25   𝑡  +   10   +  9  𝑡  +  3  +  4  𝑡  +  2     =   91            38   𝑡     =   76           𝑡     =  2    


   ℓ  (  2  )  =  ⟨   12   ,  7  ,  −  5  ⟩ 


   |      𝑄  𝑅   →   |  =      (   12   −  2    )  2   +  (  7  −  1    )  2   +  (  −  5  −  (  −  1  )    )  2     =       100   +   36   +   16     =     152    . 


   𝐫  (  𝑡  ) 


   𝐶 


   𝐫  (  0  )  =  ⟨  1  ,  2  ,  3  ⟩ 


     𝐫  ′   (  𝑡  ) 


   (  1  ,  2  ,  3  ) 


     𝐫  ″   (  𝑡  )  =   sin   (  𝑡  )  𝐢  −  2  𝐣  +   16     𝑒    4  𝑡    𝐤  ,    −  ∞  <  𝑡  <  ∞  ,    𝐫  (  0  )  =  ⟨  0  ,  0  ,  0  ⟩  ,    𝐫  ′   (  0  )  =  ⟨  0  ,  0  ,  0  ⟩ 


   𝐫  (  𝑡  )  =  −   sin   (  𝑡  )  𝐢  −    𝑡  2   𝐣  +    𝑒    4  𝑡    𝐤 


   ◯ 


   ✓ 


   1 


   𝑥  =  𝑔  (  𝑦  ) 


   𝑥  𝑦 


   |    𝑔  ″   (  𝑦  )  | 


         |    𝑔  ″   (  𝑦  )  |     (  1  +  (    𝑔  ′   (  𝑦  )    )  2     )    3  /  2      


       1  +  (    𝑔  ′   (  𝑦  )    )  2    


         |    𝑔  ″   (  𝑦  )  |       1  +  (    𝑔  ′   (  𝑦  )    )  2      


   𝑃 


   𝐫  (  𝑡  )  =  𝑃  +  ⟨  7  ,  1  ,  −  3  ⟩  𝑡  ? 


       1     50      ⟨  1  ,  −  7  ,  0  ⟩ 


       1     59      ⟨  3  ,  1  ,  7  ⟩ 


       1     59      ⟨  7  ,  1  ,  −  3  ⟩ 


   ⟨  0  ,  3  ,  1  ⟩ 


   𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2   +    𝑦  2   +      𝑥  −  2  +    𝑦  2    


   𝑓  (  𝑥  ,  𝑦  )  =   arccos   (    𝑥  2   +    𝑦  2   ) 


     𝑧  2   =    𝑥  2   +    𝑦  2   +  4 


   𝐫  (  𝑢  ,  𝑣  ) 


   𝑥  =  4    𝑦  2   +    𝑧  2  


   0  ≤  𝑥  ≤  4 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  𝑢  ,  𝑣  ,  4    𝑢  2   +    𝑣  2   ⟩  ,  0  ≤  4    𝑢  2   +    𝑣  2   ≤  4 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  𝑢     cos   (  𝑣  )  ,  𝑢     sin   (  𝑣  )  ,  4    𝑢  2        cos   2   (  𝑣  )  +    𝑢  2        sin   2   (  𝑣  )  ⟩  ,  0  ≤  𝑢  ≤  4  ,  0  ≤  𝑣  ≤  2  𝜋 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  𝑢  ,        𝑢   2       cos   (  𝑣  )  ,    𝑢      sin   (  𝑣  )  ⟩  ,  0  ≤  𝑢  ≤  4  ,  0  ≤  𝑣  ≤  2  𝜋 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  4    𝑣  2   ,  𝑣     cos   (  𝑢  )  ,  2  𝑣     sin   (  𝑢  )  ⟩  ,  0  ≤  𝑢  ≤  2  𝜋  ,  0  ≤  𝑣  ≤  1 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  4    𝑢  2   +    𝑣  2   ,  𝑢  ,  𝑣  ⟩  ,  0  ≤  4    𝑢  2   +    𝑣  2   ≤  4 


   𝑥 


   𝑦  𝑧 


   4  =  4    𝑦  2   +    𝑧  2  


   𝑥  =  4 


   𝐫  (  𝑡  )  =  ⟨  4  ,   sin   (  𝑡  )  ,  2     cos   (  𝑡  )  ⟩  ,  0  ≤  𝑡  ≤  2  𝜋  . 


   𝑔  ∶    ℝ  3   →  ℝ 


   𝑔  (  𝑥  ,  𝑦  ,  𝑧  )  =    𝑥  4   +    𝑦  3   +    𝑧  2  


   𝑃  =  (  2  ,  −  4  ,  4  ) 


   𝑔 


   𝑦 


   𝑧 


   𝐷  𝑔  (  𝑥  ,  𝑦  ,  𝑧  )  =    [              4    𝑥  3      3    𝑦  2      2  𝑧          ]   ,    so    𝐷  𝑔  (  𝑃  )  =    [               32       48      8          ]   . 


   𝐢  ,  𝐣  ,  𝐤 


   𝐮  =      𝑂  𝑃   →   /  |      𝑂  𝑃   →   |  =    1  6   ⟨  −  2  ,  4  ,  −  4  ⟩ 


             𝐷  𝐢   𝑔  (  𝑃  )     =  𝐷  𝑔  (  𝑃  )  𝐢  =   32             𝐷  𝐣   𝑔  (  𝑃  )     =  𝐷  𝑔  (  𝑃  )  𝐣  =   48             𝐷  𝐤   𝑔  (  𝑃  )     =  𝐷  𝑔  (  𝑃  )  𝐤  =  8            𝐷  𝐮   𝑔  (  𝑃  )     =  𝐷  𝑔  (  𝑃  )  𝐮  =    1  6   (  2  (   32   )  −  4  (   48   )  +  (  4  )  (  8  )  )  =  −   16     


    48  


   𝑓  (  𝑥  ,  𝑦  ,  𝑧  )  =  𝑦  𝑧  +    𝑥  2     𝑒    𝑧  −  𝑦   


   𝑓  =  7 


   𝑃  =  (    𝑒   ,  3  ,  2  ) 


   𝑃  =  (    𝑥  0   ,    𝑦  0   ,    𝑧  0   ) 


   ∇  𝑓  (  𝑃  )  ⋅  ⟨  𝑥  −    𝑥  0   ,  𝑦  −    𝑦  0   ,  𝑧  −    𝑧  0   ⟩  =  0 


   ∇  𝑓  =  ⟨  2  𝑥    𝑒    𝑧  −  𝑦    ,  𝑧  −    𝑥  2     𝑒    𝑧  −  𝑦    ,  𝑦  +    𝑥  2     𝑒    𝑧  −  𝑦    ⟩  , 


   ∇  𝑓  (  𝑃  )  =  ⟨  2  /    𝑒   ,  1  ,  4  ⟩ 


     2    𝑒    (  𝑥  −    𝑒   )  +  (  𝑦  −  3  )  +  4  (  𝑧  −  2  )  =  0 


     2    𝑒    𝑥  +  𝑦  +  4  𝑧  =   13  


   𝐿  (  𝑥  ,  𝑦  ,  𝑧  ) 


   𝑓 


   𝐿  (  𝑥  ,  𝑦  ,  𝑧  )  =  𝑓  (  𝑃  )  +  ∇  𝑓  (  𝑃  )  ⋅  ⟨  𝑥  −    𝑥  0   ,  𝑦  −    𝑦  0   ,  𝑧  −    𝑧  0   ⟩  . 


   𝑓  (  𝑃  )  =  7 


   𝐿  (  𝑥  ,  𝑦  ,  𝑧  )  =  7  +    2    𝑒    (  𝑥  −    𝑒   )  +  (  𝑦  −  3  )  +  4  (  𝑧  −  2  )  . 


   𝑓  (    𝑒   ,  3  .  1  ,  2  .  1  ) 


   𝑓  (    𝑒   ,  3  .  1  ,  2  .  1  )  )  ≈  𝐿  (    𝑒   ,  3  .  1  ,  2  .  1  )  )  =  7  +    2    𝑒    (  0  )  +  (  .  1  )  +  4  (  .  1  )  =  7  .  5 


   𝑓  (  𝑥  ,  𝑦  )  =  𝑥  𝑦 


     𝑥  3   +    𝑦  3   =  2 


   𝑔  (  𝑥  ,  𝑦  )  =    𝑥  3   +    𝑦  3   =  2 


   ∇  𝑓  =  ⟨  𝑦  ,  𝑥  ⟩ 


   ∇  𝑔  =  ⟨  3    𝑥  2   ,  3    𝑦  2   ⟩ 


   ∇  𝑓  =  𝜆  ∇  𝑔 


   {            𝑦  =  3    𝑥  2   𝜆             𝑥  =  3    𝑦  2   𝜆               𝑥  3   +    𝑦  3   =  2  .              


   𝜆 


   𝑥  =  0 


   𝜆  =      𝑦    3    𝑥  2     


   𝑦  =  0 


     0  3   +    0  3   ≠  2 


   𝑥  =  3    𝑦  2     𝑦    3    𝑥  2     . 


     𝑥  2  


     𝑥  3   =    𝑦  3  


   𝑥  =  𝑦 


   2    𝑥  3   =  2 


     𝑥  3   =  1 


   𝑥  =  1 


   𝑦  =  1 


   𝑓  (  𝑥  ,  𝑦  ) 


   𝑓  (  1  ,  1  )  =  1 


   𝑥  →  −  ∞ 


   𝑦  →  ∞ 


   𝑓  =  𝑥  𝑦  →  −  ∞ 


   𝑧  =  𝑥  ,    𝑥  +  𝑧  =  5  ,    𝑧  =  𝑦  ,    𝑦  =   10   ,     and     𝑧  =  0  . 


     ∫  0    5  /  2      ∫  𝑧    5  −  𝑧      ∫  𝑧   10      𝑑  𝑦    𝑑  𝑥    𝑑  𝑧 


     ∫  0    5  /  2      ∫  0  𝑥     ∫  𝑧   10      𝑑  𝑦    𝑑  𝑧    𝑑  𝑥  +    ∫    5  /  2   5     ∫  0    5  −  𝑥      ∫  𝑧   10      𝑑  𝑦    𝑑  𝑧    𝑑  𝑥 


     ∫  0    5  /  2      ∫  𝑧   10      ∫  𝑧    5  −  𝑧      𝑑  𝑥    𝑑  𝑦    𝑑  𝑧 


     ∫  0    5  /  2      ∫  0  𝑦     ∫  𝑧    5  −  𝑧      𝑑  𝑥    𝑑  𝑧    𝑑  𝑦  +    ∫    5  /  2    10      ∫  0    5  /  2      ∫  𝑧    5  −  𝑧      𝑑  𝑥    𝑑  𝑧    𝑑  𝑦 


     ∫  0    5  /  2      ∫  𝑦    5  −  𝑦      ∫  0  𝑦     𝑑  𝑧    𝑑  𝑥    𝑑  𝑦  +    ∫  0    5  /  2      ∫  𝑥   10      ∫  0  𝑦     𝑑  𝑧    𝑑  𝑥    𝑑  𝑦  +    ∫    5  /  2   5     ∫    5  −  𝑥    10      ∫  0    5  −  𝑥      𝑑  𝑧    𝑑  𝑥    𝑑  𝑦 


     ∫  0  3     ∫  0  1     ∫  0    𝑦    2  𝑥  𝑦  𝑧    𝑒    𝑥  2      𝑑  𝑥    𝑑  𝑦    𝑑  𝑧  . 


   (  𝑥  ,  𝑦  )  =  𝑇  (  𝑢  ,  𝑣  ) 


     ∬  𝑅   (  9    𝑥  2   +   24   𝑥  𝑦  +   16     𝑦  2   )  (  𝑥  −  5  𝑦  )    𝑑  𝑥    𝑑  𝑦 


   𝑢 


   𝑣 


   3  𝑥  +  4  𝑦  =   17   ,    3  𝑥  +  4  𝑦  =   77   ,    𝑥  −  5  𝑦  =   227   ,    𝑥  −  5  𝑦  =   314   . 


   𝑢  =  3  𝑥  +  4  𝑦 


   𝑣  =  𝑥  −  5  𝑦 


   𝑢  =  𝑥  −  5  𝑦 


   𝑣  =  3  𝑥  +  4  𝑦 


   𝐺 


   𝑢  𝑣 


    227   ≤  𝑢  ≤   314  


    17   ≤  𝑣  ≤   77  


   (  9    𝑥  2   +   24   𝑥  𝑦  +   16     𝑦  2   )  (  𝑥  −  5  𝑦  )  =  (  3  𝑥  +  4  𝑦    )  2   (  𝑥  −  5  𝑦  )  =  𝑢    𝑣  2   . 


   |   det   (  𝐷  𝑇  (  𝑢  ,  𝑣  )  )  |  =    1    |   det   (  𝐷    𝑇    −  1    (  𝑥  ,  𝑦  )  )  |    =    1    |   det       [              1     −  5        3     4          ]   |    =    1    |  4  +   15   |    =    1   19    . 


     ∫   17    77      ∫   227    314        𝑢    𝑣  2     19      𝑑  𝑢    𝑑  𝑣 


     ∫   227    314      ∫   17    77          𝑢  2   𝑣    19      𝑑  𝑢    𝑑  𝑣  . 


   (  1  ,  1  ) 


   (  4  ,  2  ) 


     ∫  𝐶   𝑥  −  𝑦    𝑑  𝑠 


   𝐫  (  𝑡  )  =  ⟨  1  ,  1  ⟩  +  ⟨  3  ,  1  ⟩  𝑡  ,    0  ≤  𝑡  ≤  1  . 


   ‖    𝐫  ′   (  𝑡  )  ‖  =      (  3    )  2   +    1  2     =     10    . 


             ∫  𝐶   𝑥  −  𝑦    𝑑  𝑠     =    ∫  0  1   (  3  𝑡  +  1  −  (  𝑡  +  1  )  )     10      𝑑  𝑡            =     10      ∫  0  1   2  𝑡    𝑑  𝑡            =     10              𝑡  2   |   0  1             =     10      


     ∫  𝐶   (  𝑥  𝐢  −  𝑦  𝐣  )  ⋅  𝑑  𝐫 


   ∇  (    1  2     𝑥  2   −    1  2     𝑦  2   )  =  𝑥  𝐢  −  𝑦  𝐣 


             ∫  𝐶   (  𝑥  𝐢  −  𝑦  𝐣  )  ⋅  𝑑  𝐫     =    ∫  0  1   ⟨  3  𝑡  +  1  ,  −  𝑡  −  1  ⟩  ⋅  ⟨  3  ,  1  ⟩    𝑑  𝑡            =    ∫  0  1   3  (  3  𝑡  +  1  )  −  (  𝑡  +  1  )    𝑑  𝑡            =    ∫  0  1   8  𝑡  +  2    𝑑  𝑡            =        4    𝑡  2   +  2  𝑡  |   0  1             =  6             


     ∫  𝐶   (  𝑥  𝐢  −  𝑦  𝐣  )  ⋅  𝑑  𝐫  =          1  2   (    𝑥  2   −    𝑦  2   )  |     (  1  ,  1  )     (  4  ,  2  )    =    1  2   (   16   −  4  )  =  6 


   𝐅  (  𝑥  ,  𝑦  )  =  ⟨  2  𝑥     sin   (  𝑦  )  +  𝑦     cos   (  𝑥  )  ,    𝑥  2      cos   (  𝑦  )  +   sin   (  𝑥  )  ⟩    𝐆  (  𝑥  ,  𝑦  )  =  ⟨    𝑥  2      sin   (  𝑦  )  ,  𝑦     cos   (  𝑥  )  ⟩  . 


   (  𝜋  ,  𝜋  /  2  ) 


   (  𝜋  /  2  ,  𝜋  ) 


     ℝ  2  


    curl     𝐅  =  ⟨  0  ,  0  ,  2  𝑥     cos   (  𝑦  )  +   cos   (  𝑥  )  −  (  2  𝑥     cos   (  𝑦  )  +   cos   (  𝑥  )  )  ⟩  =  ⟨  0  ,  0  ,  0  ⟩  , 


   𝐅 


    curl     𝐆  =  ⟨  0  ,  0  ,  −  𝑦     sin   (  𝑥  )  −    𝑥  2      cos   (  𝑦  )  ⟩  , 


   𝐆 


     𝑓  𝑥   =  2  𝑥     sin   (  𝑦  )  +  𝑦     cos   (  𝑥  )     and       𝑓  𝑦   =    𝑥  2      cos   (  𝑦  )  +   sin   (  𝑥  )  . 


   𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2      sin   (  𝑦  )  +  𝑦     sin   (  𝑥  )  +  ℎ  (  𝑦  )  , 


   ℎ  (  𝑦  ) 


     𝑓  𝑦   =    𝑥  2      cos   (  𝑦  )  +   sin   (  𝑥  )  +    ℎ  ′   (  𝑦  )  . 


     ℎ  ′   (  𝑦  )  =  0  , 


   𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2      sin   (  𝑦  )  +  𝑦     sin   (  𝑥  )  . 


             ∫  𝐶   𝐅  ⋅  𝑑  𝐫     =  𝑓  (  𝜋  /  2  ,  𝜋  )  −  𝑓  (  𝜋  ,  𝜋  /  2  )            =    (  0  +  𝜋  )   −    (    𝜋  2   +  0  )             =  𝜋  −    𝜋  2   .    


   𝐅  (  𝑥  ,  𝑦  ,  𝑧  )  =  ⟨  𝑧  ,  𝑥  ,  𝑦  ⟩  , 


   𝑆 


   𝑥  +  𝑦  +  𝑧  =  1 


     𝑥  2   +    𝑦  2   =  1 


   ⟨  1  ,  1  ,  1  ⟩ 


   𝐫  (  𝑡  )  =  ⟨   cos   (  𝑡  )  ,   sin   (  𝑡  )  ,  1  −   cos   (  𝑡  )  −   sin   (  𝑡  )  ⟩  ,    0  ≤  𝑡  ≤  2  𝜋  . 


   𝐅  (  𝐫  (  𝑡  )  ) 


     𝐫  ′   (  𝑡  )  =  ⟨  −   sin   (  𝑡  )  ,   cos   (  𝑡  )  ,   sin   (  𝑡  )  −   cos   (  𝑡  )  ⟩    𝐅  (  𝐫  (  𝑡  )  )  =  ⟨  1  −   cos   (  𝑡  )  −   sin   (  𝑡  )  ,   cos   (  𝑡  )  ,   sin   (  𝑡  )  ⟩  . 


             ∬  𝑆   (  ∇  ×  𝐅  )  ⋅  𝐧    𝑑  𝜎     =    ∫  𝐶   𝐅  ⋅  𝑑  𝐫            =    ∫  0    2  𝜋    𝐅  (  𝐫  (  𝑡  )  )  ⋅    𝐫  ′   (  𝑡  )    𝑑  𝑡            =    ∫  0    2  𝜋    ⟨  1  −   cos   (  𝑡  )  −   sin   (  𝑡  )  ,   cos   (  𝑡  )  ,   sin   (  𝑡  )  ⟩  ⋅  ⟨  −   sin   (  𝑡  )  ,   cos   (  𝑡  )  ,   sin   (  𝑡  )  −   cos   (  𝑡  )  ⟩    𝑑  𝑡            =    ∫  0    2  𝜋    −   sin   (  𝑡  )  +   sin   (  𝑡  )   cos   (  𝑡  )  +     sin   2   (  𝑡  )  +     cos   2   (  𝑡  )  +     sin   2   (  𝑡  )  −   sin   (  𝑡  )   cos   (  𝑡  )    𝑑  𝑡            =    ∫  0    2  𝜋    1  −   sin   (  𝑡  )  +     sin   2   (  𝑡  )    𝑑  𝑡            =    ∫  0    2  𝜋      3  2   −   sin   (  𝑡  )  −    1  2      cos   (  2  𝑡  )    𝑑  𝑡            =    3  2   𝑡  +   cos   (  𝑡  )  −    1  4      sin   (  2  𝑡  )    |  0    2  𝜋              =  3  𝜋  .    


   𝐅  =  ⟨  𝑧  𝑥  ,  𝑧  ,  𝑧  𝑦  ⟩ 


   𝑧  =  1  −    𝑥  2   −    𝑦  2  


   𝑧  ≥  0 


     𝐫  3  


     𝐫  1  


     𝐫  2  


     𝑥  2   +    𝑦  2   ≤  1 


     𝐫  𝑟   ×    𝐫  𝜃  


     𝐫  𝑟   =  ⟨   cos   (  𝜃  )  ,   sin   (  𝜃  )  ,  −  2  𝑟  ⟩      𝐫  𝜃   =  ⟨  −  𝑟     sin   (  𝜃  )  ,  𝑟     cos   (  𝜃  )  ,  0  ⟩  . 


     𝐫  𝑟   ×    𝐫  𝜃   =  ⟨  2    𝑟  2      cos   (  𝜃  )  ,  2    𝑟  2      sin   (  𝜃  )  ,  𝑟  ⟩  . 


             ∬  𝑆   𝐅  ⋅  𝐧    𝑑  𝜎     =    ∬  𝑅   𝐅  (    𝐫  2   (  𝑟  ,  𝜃  )  )  ⋅  (    𝐫  𝑟   ×    𝐫  𝜃   )    𝑑  𝑟    𝑑  𝜃            =    ∫  0    2  𝜋      ∫  0  1   (  1  −    𝑟  2   )  ⟨  𝑟     cos   (  𝜃  )  ,  1  ,  𝑟     sin   (  𝜃  )  ⟩  ⋅  ⟨  2    𝑟  2      cos   (  𝜃  )  ,  2    𝑟  2      sin   (  𝜃  )  ,  𝑟  ⟩    𝑑  𝑟    𝑑  𝜃            =    ∫  0    2  𝜋      ∫  0  1   (  1  −    𝑟  2   )  (  2    𝑟  3        cos   2   (  𝜃  )  +  3    𝑟  2      sin   (  𝜃  )  )    𝑑  𝑟    𝑑  𝜃            =    ∫  0    2  𝜋      ∫  0  1   (  2    𝑟  3   −  2    𝑟  5   )     cos   2   (  𝜃  )  +  (  3    𝑟  2   −  3    𝑟  4   )   sin   (  𝜃  )    𝑑  𝑟    𝑑  𝜃            =    ∫  0    2  𝜋          (    1  2     𝑟  4   −    1  3     𝑟  6   )     cos   2   (  𝜃  )  +  (    𝑟  3   −    3  5     𝑟  5   )   sin   (  𝜃  )  |     𝑟  =  0     𝑟  =  1        𝑑  𝜃            =    ∫  0    2  𝜋      1  6        cos   2   (  𝜃  )  +    2  5      sin   (  𝜃  )    𝑑  𝜃            =    ∫  0    2  𝜋      1   12    (  1  +   cos   (  2  𝜃  )  )  +    2  5      sin   (  𝜃  )    𝑑  𝜃            =          1   12    𝜃  +    1   24       sin   (  2  𝜃  )  −    2  5      cos   (  𝜃  )  |   0    2  𝜋              =    𝜋  6   .    


   ℎ  (  𝑥  ,  𝑦  ) 


   ℎ 


   +  ,  −  ,  0 


   (  −  1  ,  0  ) 


     𝐷  𝐮   ℎ  (  −  2  ,  0  )  ≈  0  .   422  


   𝐮 


   ⟨  1  ,  1  ⟩ 


   (  −  2  ,  0  ) 


     ∬  𝑆   𝐅  ⋅  𝐧    𝑑  𝜎  =  −   200  


   𝛿  (  𝑥  ,  𝑦  )  =    𝑥  2   +  (  2  −  𝑦  )  +   100  


       2  


   𝑦  =  2 


   𝛿 


   2  ≤  𝑥  ≤  4 


   0  ≤  𝑦  ≤  1 


   𝐅  (  𝑥  ,  𝑦  )  . 


     ∮  𝐶   𝐅  ⋅  𝑑  𝐫  =   50     J  


     ∮  𝐶   𝐅  ⋅  𝑑  𝐫 
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• D3: Optimization. I can locate and classify critical points of functions of two variables. I can 
find absolute maxima and minima on closed bounded sets. I can use the method of Lagrange 
multipliers to maximize and minimize functions of two or three variables subject to constraints. 
I can interpret the results of my calculations to solve problems.

• I1: Double & Triple Integrals. I can set up double and triple integrals as iterated integrals 
over any region. I can sketch regions based on a given iterated integral.

• I2: Iterated Integrals. I can compute iterated integrals of two and three variable functions, 
including applying Fubini’s Theorem to change the order of integration of an iterated integral.

• I3: Change of Variables. I can use polar, cylindrical, and spherical coordinates to transform 
double and triple integrals and can sketch regions based on given polar, cylindrical, and spherical 
iterated integrals. I can use general change of variables to transform double and triple integrals 
for easier calculation. I can choose the most appropriate coordinate system to evaluate a specific 
integral.

• V1: Line Integrals. I can set up and evaluate scalar and vector field line integrals in two and 
three dimensions.

• V2: Conservative Vector Fields. I can test for conservative vector fields and find potential 
functions. I can state and apply the Fundamental Theorem of Line Integrals.

• V3: Generalizations of the FTC. I can state and apply Green’s Theorem, Stokes’ Theorem 
and the Divergence Theorem to solve problems in two and three dimensions. I can choose which 
theorem is appropriate for different integrals. I can compute curl and divergence of vector fields.

• V4: Surface Integrals. I can set up and compute surface integrals for scalar and vector 
valued functions.

• A1: Interpreting Derivatives. I can interpret the meaning of a partial derivative, a gradient, 
or a directional derivative of a function at a given point in a specified direction, including in the 
context of a graph or a contour plot.

• A2: Integral Applications. I can use multiple integrals to solve physical problems, such as 
finding area, average value, volume, or the mass or center of mass of a lamina or solid. I can 
interpret mass, center of mass, work, flow, circulation, flux, and surface area in terms of line 
and/or surface integrals, as appropriate.
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Tasks

1. [G1: Lines and Planes] Let 𝑝1 be the plane defined by the equation 5𝑥+3𝑦−2𝑧 = 91
and let 𝑄 be the point (2, 1,−1).

(a) Find an equation for the plane 𝑝2 which contains the point 𝑄 and is parallel to 𝑝1.

Solution. The normal vector to 𝑝2 needs to be parallel to the normal vector of 𝑝1, 
so we can take the same vector. Since the plane must contain 𝑄, we use that as the 
reference point:

5(𝑥 − 2) + 3(𝑦 − 1) − 2(𝑧 + 1) = 0 or 5𝑥 + 3𝑦 − 2𝑧 = 15.

(b) Find an equation for the line ℓ which passes through 𝑄 and is orthogonal to both 
planes.

Solution. Since ℓ is orthogonal to both planes, its direction vector is parallel to the 
normal of both planes, so we again take the same vector and use 𝑄 as our reference 
point.

ℓ(𝑡) = ⟨5, 3,−2⟩𝑡 + ⟨2, 1,−1⟩.

(c) Find the point 𝑅 where the line ℓ intersects the plane 𝑝1.

Solution. To find 𝑅, we plug the line equation into the plane equation.

5(5𝑡 + 2) + 3(3𝑡 + 1) − 2(−2𝑡 − 1) = 91
25𝑡 + 10 + 9𝑡 + 3 + 4𝑡 + 2 = 91

38𝑡 = 76
𝑡 = 2

So 𝑅 is ℓ(2) = ⟨12, 7,−5⟩.

(d) Compute the distance between the two planes using your work in parts (a)-(c) above.

Solution. The distance between the two planes is the length of any line segment 
orthogonal to both planes. Thus the segment of ℓ between 𝑄 and 𝑅 gives the distance:

| ⃗𝑄𝑅| = √(12 − 2)2 + (7 − 1)2 + (−5 − (−1))2 =
√
100 + 36 + 16 =

√
152.
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2. [G2: Calculus of Curves] For parts (a)-(c), determine whether the statement is true 
or false and write T or F in the box provided. For part (d), bubble in the multiple choice 
option that corresponds to your answer.

(a) T/F: A smooth curve in the plane that never crosses itself has a single tangent line 
at a given point.

T

(b) T/F: Let 𝐫(𝑡) parameterize a curve 𝐶 in space with 𝐫(0) = ⟨1, 2, 3⟩. Then 𝐫′(𝑡)
gives a direction vector for the tangent line to the curve at the point (1, 2, 3).

F

(c) T/F: The solution to the initial value problem

𝐫″(𝑡) = sin(𝑡)𝐢 − 2𝐣 + 16𝑒4𝑡𝐤, −∞ < 𝑡 < ∞, 𝐫(0) = ⟨0, 0, 0⟩, 𝐫′(0) = ⟨0, 0, 0⟩

is
𝐫(𝑡) = − sin(𝑡)𝐢 − 𝑡2𝐣 + 𝑒4𝑡𝐤

F

(d) Which statement below about motion in space is not true?

◯ A) A particle with no velocity at a given time may still be accelerating at that 
time.

◯ B) A particle moving with zero acceleration must be moving at constant speed.
◯ C) The path of a particle moving along a smooth curve can intersect itself.
✓ D) A particle moving at constant speed must have zero acceleration.
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3. [G3: Geometry of Curves] For this problem, bubble in the multiple choice option that 
corresponds to your answer on each part.

(a) Which statement below about arc length is not true?

◯ The length of a curve 𝐶 is always positive.
◯ The length of a curve 𝐶 may be equal to the distance between its endpoints.
◯ The length of a curve 𝐶 parameterized by arc length can be greater than 1.
◯ Every smooth curve can be parameterized by arc length.
✓ The length of a curve 𝐶 depends on the parameterization we use to compute it.

(b) Which of the following expressions is the curvature of a curve 𝑥 = 𝑔(𝑦) in the 
𝑥𝑦-plane?
◯ A) |𝑔″(𝑦)|

✓ B) 
|𝑔″(𝑦)|

(1 + (𝑔′(𝑦))2)3/2

◯ C) √1+ (𝑔′(𝑦))2

◯ D) 
|𝑔″(𝑦)|

√1 + (𝑔′(𝑦))2

(c) Which of the following vectors could be the principal unit normal to a curve at a 
point 𝑃 where the tangent line is

𝐫(𝑡) = 𝑃 + ⟨7, 1,−3⟩𝑡?

✓ A) 
1

√
50

⟨1,−7, 0⟩

◯ B) 
1

√
59

⟨3, 1, 7⟩

◯ C) 
1

√
59

⟨7, 1,−3⟩

◯ D) ⟨0, 3, 1⟩
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4. [G4: Surfaces] For this problem, bubble in the multiple choice option that corresponds 
to your answer on each part.

(a) Which option below best describes the domain of the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 +
√𝑥− 2 + 𝑦2?
◯ A) The part of the 𝑥𝑦-plane on one side of a vertical line
◯ B) All of the 𝑥𝑦-plane
◯ C) All of the 𝑥𝑦-plane except for a disk about the origin
✓ D) The part of the 𝑥𝑦-plane on one side of a parabola
◯ E) The part of the 𝑥𝑦-plane on one side of a horizontal line

(b) The contours of the function 𝑓(𝑥, 𝑦) = arccos(𝑥2 + 𝑦2) are best described as:
◯ A) lines
✓ B) circles
◯ C) sinusoidal curves
◯ D) parabolas

(c) The quadric surface defined by the equation 𝑧2 = 𝑥2 + 𝑦2 + 4 is a:
◯ A) ellipsoid
◯ B) elliptic paraboloid
◯ C) hyperbolic paraboloid
◯ D) hyperboloid of one sheet
✓ E) hyperboloid of two sheets
◯ F) cone
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5. [G5: Parameterization]

(a) Fill in the circle next to all of the parameterizations 𝐫(𝑢, 𝑣) below corresponding to 
the surface which is the part of the elliptical paraboloid 𝑥 = 4𝑦2+𝑧2 with 0 ≤ 𝑥 ≤ 4.

◯ A) 𝐫(𝑢, 𝑣) = ⟨𝑢, 𝑣, 4𝑢2 + 𝑣2⟩, 0 ≤ 4𝑢2 + 𝑣2 ≤ 4
◯ B) 𝐫(𝑢, 𝑣) = ⟨𝑢 cos(𝑣), 𝑢 sin(𝑣), 4𝑢2 cos2(𝑣) + 𝑢2 sin2(𝑣)⟩, 0 ≤ 𝑢 ≤ 4, 0 ≤ 𝑣 ≤ 2𝜋

✓ C) 𝐫(𝑢, 𝑣) = ⟨𝑢,
√
𝑢
2 cos(𝑣),

√
𝑢 sin(𝑣)⟩, 0 ≤ 𝑢 ≤ 4, 0 ≤ 𝑣 ≤ 2𝜋

✓ D) 𝐫(𝑢, 𝑣) = ⟨4𝑣2, 𝑣 cos(𝑢), 2𝑣 sin(𝑢)⟩, 0 ≤ 𝑢 ≤ 2𝜋, 0 ≤ 𝑣 ≤ 1
✓ E) 𝐫(𝑢, 𝑣) = ⟨4𝑢2 + 𝑣2, 𝑢, 𝑣⟩, 0 ≤ 4𝑢2 + 𝑣2 ≤ 4

(b) Give a parameterization of the boundary of the surface in part (a) that is oriented 
clockwise around the positive 𝑥-axis when viewed looking down the positive 𝑥-axis 
toward the 𝑦𝑧-plane. Be sure to give a domain.

Solution. The boundary of the surface is the ellipse 4 = 4𝑦2 +𝑧2 in the plane 𝑥 = 4. 
A parameterization of this ellipse with clockwise orientation is

𝐫(𝑡) = ⟨4, sin(𝑡), 2 cos(𝑡)⟩, 0 ≤ 𝑡 ≤ 2𝜋.
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6. [D1: Computing Derivatives] In this problem, you will work with the function 𝑔 ∶
ℝ3 → ℝ given by 𝑔(𝑥, 𝑦, 𝑧) = 𝑥4 + 𝑦3 + 𝑧2 and the point 𝑃 = (2,−4, 4) in the domain 
of 𝑔.

(a) Suppose that you are only able to travel away from 𝑃 in one of the following direc­
tions. Which direction (assuming you move with unit speed) will yield the greatest 
instantaneous decrease in 𝑔?
◯ parallel to the 𝑥-axis, with 𝑥 increasing
◯ parallel to the 𝑦-axis, with 𝑦 increasing
◯ parallel to the 𝑧-axis, with 𝑧 increasing
✓ directly away from the origin

(b) Justify your answer to part (a).

Solution. This problem is asking in which of the given directions is the directional 
derivative of 𝑔 most negative. So we compute.

𝐷𝑔(𝑥, 𝑦, 𝑧) = [4𝑥3 3𝑦2 2𝑧] ,  so 𝐷𝑔(𝑃) = [32 48 8] .

We also need a unit vector in each direction; for (A)-(C) these are the standard unit 
vectors 𝐢, 𝐣, 𝐤 and for (D) it is the vector 𝐮 = ⃗𝑂𝑃/| ⃗𝑂𝑃| = 1

6⟨−2, 4,−4⟩. We then have:

𝐷𝐢𝑔(𝑃 ) = 𝐷𝑔(𝑃)𝐢 = 32
𝐷𝐣𝑔(𝑃 ) = 𝐷𝑔(𝑃)𝐣 = 48
𝐷𝐤𝑔(𝑃 ) = 𝐷𝑔(𝑃)𝐤 = 8

𝐷𝐮𝑔(𝑃 ) = 𝐷𝑔(𝑃)𝐮 =
1
6(2(32) − 4(48) + (4)(8)) = −16

Of these, 48 is the smallest value, so the direction (iv) yields the greatest instantaneous 
decrease in 𝑔.
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7. [D2: Tangent Planes and Linear Approximations] Let 𝑓(𝑥, 𝑦, 𝑧) = 𝑦𝑧 + 𝑥2𝑒𝑧−𝑦.

(a) Find an equation of the tangent plane to the level surface 𝑓 = 7 at the point 
𝑃 = (

√
𝑒, 3, 2).

Solution. The equation of a tangent plane to a level surface of a function of three 
variables at a point 𝑃 = (𝑥0, 𝑦0, 𝑧0) is ∇𝑓(𝑃) ⋅ ⟨𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0⟩ = 0.

∇𝑓 = ⟨2𝑥𝑒𝑧−𝑦, 𝑧 − 𝑥2𝑒𝑧−𝑦, 𝑦 + 𝑥2𝑒𝑧−𝑦⟩,

so ∇𝑓(𝑃) = ⟨2/
√
𝑒, 1, 4⟩.

Thus an equation of the tangent plane is

2
√
𝑒
(𝑥 −

√
𝑒) + (𝑦 − 3) + 4(𝑧 − 2) = 0

or
2
√
𝑒
𝑥 + 𝑦 + 4𝑧 = 13

(b) Find the linearization 𝐿(𝑥, 𝑦, 𝑧) of 𝑓 at 𝑃.

Solution. The linearization 𝐿(𝑥, 𝑦, 𝑧) at 𝑃 is

𝐿(𝑥, 𝑦, 𝑧) = 𝑓(𝑃) + ∇𝑓(𝑃) ⋅ ⟨𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0⟩.

𝑓(𝑃 ) = 7 and we computed the rest of this in part (a).
So the linearization is

𝐿(𝑥, 𝑦, 𝑧) = 7 +
2
√
𝑒
(𝑥 −

√
𝑒) + (𝑦 − 3) + 4(𝑧 − 2).

(c) Use the linearization you found to approximate the value of 𝑓(
√
𝑒, 3.1, 2.1).

Solution.

𝑓(
√
𝑒, 3.1, 2.1)) ≈ 𝐿(

√
𝑒, 3.1, 2.1)) = 7 +

2
√
𝑒
(0) + (.1) + 4(.1) = 7.5
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8. [D3: Optimization] Determine the largest value of the function 𝑓(𝑥, 𝑦) = 𝑥𝑦 such that 
𝑥3 + 𝑦3 = 2. Explain why 𝑓 does not achieve a minimum subject to this constraint.

Solution. We can answer this problem using the method of Lagrange multipliers. 
Our objective function is 𝑓(𝑥, 𝑦) = 𝑥𝑦 and our constraint is 𝑔(𝑥, 𝑦) = 𝑥3 + 𝑦3 = 2. 
We have ∇𝑓 = ⟨𝑦, 𝑥⟩ and ∇𝑔 = ⟨3𝑥2, 3𝑦2⟩. Equating ∇𝑓 = 𝜆∇𝑔, we get the system 
of equations

{


𝑦 = 3𝑥2𝜆
𝑥 = 3𝑦2𝜆
𝑥3 + 𝑦3 = 2.

The nicest variable to isolate is 𝜆. Doing so in the first equation yields two cases: 
either 𝑥 = 0 or 𝜆 =

𝑦
3𝑥2 .

Case 1: 𝑥 = 0. From equation 1, we also have 𝑦 = 0. But then equation 3 is false: 
03 + 03 ≠ 2. So this is impossible.

Case 2: 𝜆 =
𝑦

3𝑥2 . Substitution into equation 2 gives

𝑥 = 3𝑦2 𝑦
3𝑥2 .

Simplifying, and multiplying by 𝑥2 to clear the fractions gives 𝑥3 = 𝑦3 or 𝑥 = 𝑦. So 
equation 3 becomes 2𝑥3 = 2, i.e. 𝑥3 = 1, i.e. 𝑥 = 1. Then 𝑦 = 1 also and this is the 
only solution point.

The largest value of 𝑓(𝑥, 𝑦) subject to this constraint is therefore 𝑓(1, 1) = 1. 𝑓
cannot attain a minimum value subject to this constraint because as 𝑥 → −∞ along 
the constraint, 𝑦 → ∞ and so 𝑓 = 𝑥𝑦 → −∞. Hence there is no minimum value.
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9. [I1: Double & Triple Integrals] Write an integral for the volume of the finite region 
bounded by the planes

𝑧 = 𝑥, 𝑥 + 𝑧 = 5, 𝑧 = 𝑦, 𝑦 = 10, and 𝑧 = 0.

Solution. The Rules for Triple Integrals tell us that this region will be easiest to 
describe using either 𝑥 or 𝑦 as the first variable of integration and 𝑧 as the last 
variable. Following the rules generates the following equivalent integrals:

∫
5/2

0
∫

5−𝑧

𝑧
∫

10

𝑧
𝑑𝑦 𝑑𝑥 𝑑𝑧

or

∫
5/2

0
∫

𝑥

0
∫

10

𝑧
𝑑𝑦 𝑑𝑧 𝑑𝑥 +∫

5

5/2
∫

5−𝑥

0
∫

10

𝑧
𝑑𝑦 𝑑𝑧 𝑑𝑥

or

∫
5/2

0
∫

10

𝑧
∫

5−𝑧

𝑧
𝑑𝑥 𝑑𝑦 𝑑𝑧

or

∫
5/2

0
∫

𝑦

0
∫

5−𝑧

𝑧
𝑑𝑥 𝑑𝑧 𝑑𝑦 +∫

10

5/2
∫

5/2

0
∫

5−𝑧

𝑧
𝑑𝑥 𝑑𝑧 𝑑𝑦

or

∫
5/2

0
∫

5−𝑦

𝑦
∫

𝑦

0
𝑑𝑧 𝑑𝑥 𝑑𝑦 +∫

5/2

0
∫

10

𝑥
∫

𝑦

0
𝑑𝑧 𝑑𝑥 𝑑𝑦 +∫

5

5/2
∫

10

5−𝑥
∫

5−𝑥

0
𝑑𝑧 𝑑𝑥 𝑑𝑦
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10. [I2: Iterated Integrals] Credit for this learning target may be earned either by com­
pleting the problem below or by completing successfully the V4 problem.
Compute

∫
3

0
∫

1

0
∫

√𝑦

0
2𝑥𝑦𝑧𝑒𝑥2 𝑑𝑥 𝑑𝑦 𝑑𝑧.

Solution.

∫
3

0
∫

1

0
∫

√𝑦

0
2𝑥𝑦𝑧𝑒𝑥2 𝑑𝑥 𝑑𝑦 𝑑𝑧 = ∫

3

0
∫

1

0
2𝑦𝑧(∫

√𝑦

0
𝑥𝑒𝑥2 𝑑𝑥)𝑑𝑦 𝑑𝑧 (Let 𝑢 = 𝑥2)

= ∫
3

0
∫

1

0
2𝑦𝑧 (

1
2𝑒

𝑢)|
𝑢=𝑦

𝑢=0
𝑑𝑦 𝑑𝑧

= ∫
3

0
∫

1

0
𝑦𝑧(𝑒𝑦 − 1)𝑑𝑦 𝑑𝑧

𝑢 = 𝑦 𝑑𝑣 = (𝑒𝑦 − 1)𝑑𝑦
𝑑𝑢 = 𝑑𝑦 𝑣 = 𝑒𝑦 − 𝑦

= ∫
3

0
𝑧(𝑦(𝑒𝑦 − 𝑦)|𝑦=1

𝑦=0 −∫
1

0
𝑒𝑦 − 𝑦 𝑑𝑦) 𝑑𝑧

= ∫
3

0
𝑧(𝑦𝑒𝑦 − 𝑒𝑦 −

1
2𝑦

2|
𝑦=1

𝑦=0
) 𝑑𝑧

= ∫
3

0
𝑧(𝑒 − 𝑒 −

1
2 − 0 + 1 + 0) 𝑑𝑧

= ∫
3

0

1
2𝑧 𝑑𝑧

=
1
4𝑧

2|
3

0

=
9
4
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11. [I3: Change of Variables] Make an appropriate linear change of variables (𝑥, 𝑦) =
𝑇 (𝑢, 𝑣) to rewrite

∬
𝑅
(9𝑥2 + 24𝑥𝑦 + 16𝑦2)(𝑥 − 5𝑦) 𝑑𝑥 𝑑𝑦

as an integral in 𝑢 and 𝑣 where 𝑅 is the parallelogram in the fourth quadrant bounded 
by the lines

3𝑥 + 4𝑦 = 17, 3𝑥 + 4𝑦 = 77, 𝑥 − 5𝑦 = 227, 𝑥 − 5𝑦 = 314.

Do not evaluate the integral.

Solution. Either 𝑢 = 3𝑥 + 4𝑦 and 𝑣 = 𝑥 − 5𝑦 or 𝑢 = 𝑥 − 5𝑦 and 𝑣 = 3𝑥 + 4𝑦 will 
work here. The only change to the final integral will be to swap the names of the 
variables of integration. We will use the second option.
From this and the given line equations, we see that the region 𝑅 in the 𝑥𝑦-plane 
corresponds to the rectangular region 𝐺 in the 𝑢𝑣-plane given by 227 ≤ 𝑢 ≤ 314 and 
17 ≤ 𝑣 ≤ 77.
The integrand is also nicely expressed in terms of 𝑢 and 𝑣 already, since we have

(9𝑥2 + 24𝑥𝑦 + 16𝑦2)(𝑥 − 5𝑦) = (3𝑥 + 4𝑦)2(𝑥 − 5𝑦) = 𝑢𝑣2.

Finally, since the transformation is linear, we can easily find the Jacobian by com­
puting the inverse of the determinant of the matrix of coefficients of this inverse 
transformation:

| det(𝐷𝑇 (𝑢, 𝑣))| =
1

| det(𝐷𝑇−1(𝑥, 𝑦))|
=

1

|det [1 −5
3 4 ]|

=
1

|4 + 15|
=

1
19.

Putting all of this together gives the final integral:

∫
77

17
∫

314

227

𝑢𝑣2

19 𝑑𝑢 𝑑𝑣

or, with the other choice of variables,

∫
314

227
∫

77

17

𝑢2𝑣
19 𝑑𝑢 𝑑𝑣.
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12. [V1: Line Integrals] Consider the curve 𝐶 which is the line segment from the point 
(1, 1) to the point (4, 2). Use any method you like to answer the following questions.

(a) Compute ∫𝐶 𝑥 − 𝑦 𝑑𝑠.

Solution. A parameterization of 𝐶 is

𝐫(𝑡) = ⟨1, 1⟩ + ⟨3, 1⟩𝑡, 0 ≤ 𝑡 ≤ 1.

Then
‖𝐫′(𝑡)‖ = √(3)2 + 12 =

√
10.

So we have

∫
𝐶
𝑥 − 𝑦 𝑑𝑠 = ∫

1

0
(3𝑡 + 1 − (𝑡 + 1))

√
10 𝑑𝑡

=
√
10∫

1

0
2𝑡 𝑑𝑡

=
√
10 𝑡2|10

=
√
10

(b) Compute ∫𝐶(𝑥𝐢 − 𝑦𝐣) ⋅ 𝑑𝐫.

Solution. We can either use the same parameterization as in (a) or notice that we have 
∇(1

2𝑥
2 − 1

2𝑦
2) = 𝑥𝐢 − 𝑦𝐣 and use the Fundamental Theorem of Line Integrals.

Via parameterization:

∫
𝐶
(𝑥𝐢 − 𝑦𝐣) ⋅ 𝑑𝐫 = ∫

1

0
⟨3𝑡 + 1,−𝑡 − 1⟩ ⋅ ⟨3, 1⟩ 𝑑𝑡

= ∫
1

0
3(3𝑡 + 1) − (𝑡 + 1) 𝑑𝑡

= ∫
1

0
8𝑡 + 2 𝑑𝑡

= 4𝑡2 + 2𝑡|10
= 6

Via the Fundamental Theorem of Line Integrals:

∫
𝐶
(𝑥𝐢 − 𝑦𝐣) ⋅ 𝑑𝐫 =

1
2(𝑥

2 − 𝑦2)|
(4,2)

(1,1)
=

1
2(16 − 4) = 6
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13. [V2: Conservative Vector Fields] Let

𝐅(𝑥, 𝑦) = ⟨2𝑥 sin(𝑦) + 𝑦 cos(𝑥), 𝑥2 cos(𝑦) + sin(𝑥)⟩ 𝐆(𝑥, 𝑦) = ⟨𝑥2 sin(𝑦), 𝑦 cos(𝑥)⟩.

In this problem you will work with these vector fields and the line segement 𝐶 beginning 
(𝜋, 𝜋/2) and ending at (𝜋/2, 𝜋).

(a) One of these two fields is conservative. Identify which one and find a potential func­
tion for that field. Clearly explain how you know the other field is not conservative.

Solution. Both fields are defined on all of ℝ2, which is an open, simply connected domain. 
Therefore we can use the curl test to determine whether each field is conservative. We have

curl𝐅 = ⟨0, 0, 2𝑥 cos(𝑦) + cos(𝑥) − (2𝑥 cos(𝑦) + cos(𝑥))⟩ = ⟨0, 0, 0⟩,

so 𝐅 is conservative. On the other hand,

curl𝐆 = ⟨0, 0,−𝑦 sin(𝑥) − 𝑥2 cos(𝑦)⟩,

which is not the zero vector everywhere. Therefore 𝐆 is not conservative.
Now we find a potential function for 𝐅. We need to find 𝑓(𝑥, 𝑦) such that

𝑓𝑥 = 2𝑥 sin(𝑦) + 𝑦 cos(𝑥) and 𝑓𝑦 = 𝑥2 cos(𝑦) + sin(𝑥).

Integrating the first equation with respect to 𝑥 gives

𝑓(𝑥, 𝑦) = 𝑥2 sin(𝑦) + 𝑦 sin(𝑥) + ℎ(𝑦),

for some function ℎ(𝑦). Differentiating this with respect to 𝑦 gives

𝑓𝑦 = 𝑥2 cos(𝑦) + sin(𝑥) + ℎ′(𝑦).

Setting this equal to the second equation above gives ℎ′(𝑦) = 0, so ℎ(𝑦) is a constant. 
Therefore one potential function for 𝐅 is

𝑓(𝑥, 𝑦) = 𝑥2 sin(𝑦) + 𝑦 sin(𝑥).

(b) Compute the work done by the conservative field along the curve 𝐶. Fully simplify 
your answer.

Solution. The work done is

∫
𝐶
𝐅 ⋅ 𝑑𝐫 = 𝑓(𝜋/2, 𝜋) − 𝑓(𝜋, 𝜋/2)

= (0 + 𝜋) − (𝜋2 + 0)
= 𝜋 − 𝜋2.



MATH 2551-G Exam 3 Version A - Page 16 of 20 November 25, 2025

14. [V3: Generalizations of the FTC] Consider the vector field

𝐅(𝑥, 𝑦, 𝑧) = ⟨𝑧, 𝑥, 𝑦⟩,

the surface 𝑆 which the part of the plane 𝑥 + 𝑦 + 𝑧 = 1 inside the cylinder 𝑥2 + 𝑦2 = 1, 
oriented with normal in the ⟨1, 1, 1⟩ direction, and the curve 𝐶 which is the boundary of 
𝑆. The curve and surface are pictured below.

(a) Give a parameterization of 𝐶 which is oriented compatibly with 𝑆.

Solution. Since 𝑆 is oriented with normal away from 
the origin, we need 𝐶 to be oriented counterclockwise 
around the 𝑧-axis viewed from above the 𝑥𝑦-plane for 
a compatible orientation. Therefore one compatible pa­
rameterization of 𝐶 is

𝐫(𝑡) = ⟨cos(𝑡), sin(𝑡), 1 − cos(𝑡) − sin(𝑡)⟩, 0 ≤ 𝑡 ≤ 2𝜋.

(b) Apply Stokes’ Theorem with your parameterization from (a) to compute the flux of 
the curl of 𝐅 across 𝑆.

Solution. We will need 𝐫′(𝑡) and 𝐅(𝐫(𝑡)) to apply Stokes’ Theorem here. These are

𝐫′(𝑡) = ⟨− sin(𝑡), cos(𝑡), sin(𝑡)−cos(𝑡)⟩ 𝐅(𝐫(𝑡)) = ⟨1−cos(𝑡)−sin(𝑡), cos(𝑡), sin(𝑡)⟩.

Now we can apply Stokes’ Theorem:

∬
𝑆
(∇ × 𝐅) ⋅ 𝐧 𝑑𝜎 = ∫

𝐶
𝐅 ⋅ 𝑑𝐫

= ∫
2𝜋

0
𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡) 𝑑𝑡

= ∫
2𝜋

0
⟨1 − cos(𝑡) − sin(𝑡), cos(𝑡), sin(𝑡)⟩ ⋅ ⟨− sin(𝑡), cos(𝑡), sin(𝑡) − cos(𝑡)⟩ 𝑑𝑡

= ∫
2𝜋

0
− sin(𝑡) + sin(𝑡) cos(𝑡) + sin2(𝑡) + cos2(𝑡) + sin2(𝑡) − sin(𝑡) cos(𝑡) 𝑑𝑡

= ∫
2𝜋

0
1 − sin(𝑡) + sin2(𝑡) 𝑑𝑡

= ∫
2𝜋

0

3
2 − sin(𝑡) −

1
2 cos(2𝑡) 𝑑𝑡

=
3
2𝑡 + cos(𝑡) −

1
4 sin(2𝑡)|2𝜋

0

= 3𝜋.
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15. [V4: Surface Integrals] Compute the flux of the vector field 𝐅 = ⟨𝑧𝑥, 𝑧, 𝑧𝑦⟩ across the 
surface 𝑆 consisting of the portion of the paraboloid 𝑧 = 1−𝑥2 −𝑦2 with 𝑧 ≥ 0, oriented 
with normal vectors away from the origin. Use any method you like.

Solution.  Please don’t use 𝐫3; it’s a pain. We can either use the definition of flux 
integrals directly with 𝐫1 or 𝐫2 or use the Divergence Theorem with the closed surface 
consisting of 𝑆 and the disk 𝑥2 + 𝑦2 ≤ 1 in the 𝑥𝑦-plane since the flux of the field on 
this disk is zero.
Using a parameterization: The simplest of these parameterizations to use is 𝐫2, since 
it will have a nice domain of integration (𝐫1 will eventually lead to polar coordinates 
anyway). To use our pullback formula, we need 𝐫𝑟 × 𝐫𝜃:

𝐫𝑟 = ⟨cos(𝜃), sin(𝜃),−2𝑟⟩ 𝐫𝜃 = ⟨−𝑟 sin(𝜃), 𝑟 cos(𝜃), 0⟩.

Then taking the cross product gives

𝐫𝑟 × 𝐫𝜃 = ⟨2𝑟2 cos(𝜃), 2𝑟2 sin(𝜃), 𝑟⟩.

We now apply the pullback formula:

∬
𝑆
𝐅 ⋅ 𝐧 𝑑𝜎 = ∬

𝑅
𝐅(𝐫2(𝑟, 𝜃)) ⋅ (𝐫𝑟 × 𝐫𝜃) 𝑑𝑟 𝑑𝜃

= ∫
2𝜋

0
∫

1

0
(1 − 𝑟2)⟨𝑟 cos(𝜃), 1, 𝑟 sin(𝜃)⟩ ⋅ ⟨2𝑟2 cos(𝜃), 2𝑟2 sin(𝜃), 𝑟⟩ 𝑑𝑟 𝑑𝜃

= ∫
2𝜋

0
∫

1

0
(1 − 𝑟2)(2𝑟3 cos2(𝜃) + 3𝑟2 sin(𝜃)) 𝑑𝑟 𝑑𝜃

= ∫
2𝜋

0
∫

1

0
(2𝑟3 − 2𝑟5) cos2(𝜃) + (3𝑟2 − 3𝑟4) sin(𝜃) 𝑑𝑟 𝑑𝜃

= ∫
2𝜋

0
(
1
2𝑟

4 −
1
3𝑟

6) cos2(𝜃) + (𝑟3 −
3
5𝑟

5) sin(𝜃)|
𝑟=1

𝑟=0
𝑑𝜃

= ∫
2𝜋

0

1
6 cos2(𝜃) +

2
5 sin(𝜃) 𝑑𝜃

= ∫
2𝜋

0

1
12(1 + cos(2𝜃)) +

2
5 sin(𝜃) 𝑑𝜃

=
1
12𝜃 +

1
24 sin(2𝜃) −

2
5 cos(𝜃)|

2𝜋

0

=
𝜋
6 .
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16. [A1: Interpreting Derivatives] In this problem, you will analyze the derivatives of a 
height function ℎ(𝑥, 𝑦) measured in inches. Here positive 𝑥 is east and positive 𝑦 is north, 
both measured in feet.A contour plot for ℎ is shown below.

(a) Do you move up, down, or stay 
level moving north from the 
point 𝑃?

down

(b) Determine the sign (+,−, 0) of 
the rate of change of ℎ at 𝑄 to­
wards (−1, 0).

+

(c) Draw a vector which points in 
the direction of greatest rate of 
change of height at the point 𝑅.

(d) Explain the meaning of the fact that

𝐷𝐮ℎ(−2, 0) ≈ 0.422

if 𝐮 is the unit vector in the ⟨1, 1⟩ direction.

Solution. At the point (−2, 0), the rate of change of ℎ in the direction 𝐮 is approx­
imately 0.422. This means that if you move northeast from that point, you will be 
moving uphill at a rate of about 0.422 inches per foot moved northeast.
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17. [A2: Integral Applications]

(a) Give a possible interpretation of the statement

∬
𝑆
𝐅 ⋅ 𝐧 𝑑𝜎 = −200

where 𝑆 is the surface of a net. Be specific about the physical meaning you choose.

Solution. Many possible solutions. For example, this could represent the net flow of 
water (in cubic meters per second) through a fishing net submerged in a river, where 
𝐅 represents the velocity field of the water. The negative sign could then indicate 
that there is a net flow of water into the net.

(b) Suppose that 𝛿(𝑥, 𝑦) = 𝑥2 + (2 − 𝑦) + 100 is the density (in kg/m2) of a lamina 
occupying the region 𝑅 in the 𝑥𝑦-plane bounded by the lines 𝑥 = 0, 𝑥 = 4, 𝑦 = 0, 
and 𝑦 = 2.
Explain which quarter of the rectangle contains the center of mass of the lamina. 
Justify your answer.

Solution. The density is largest when 𝑥 is large and 𝑦 is small, since 𝛿 increases 
with 𝑥2 and decreases with 𝑦. Therefore, the center of mass will be pulled towards 
the region where 𝑥 is largest and 𝑦 is smallest, which is the lower right quarter of the 
rectangle (where 2 ≤ 𝑥 ≤ 4 and 0 ≤ 𝑦 ≤ 1).

(c) A drone moves through the air (position measured in meters) and experiences a drag 
force in Newtons given by 𝐅(𝑥, 𝑦). We compute that

∮
𝐶
𝐅 ⋅ 𝑑𝐫 = 50 J

where 𝐶 is a closed path taken by the drone. Explain the meaning of this calculation, 
including units.

Solution. The line integral ∮𝐶 𝐅 ⋅ 𝑑𝐫 represents the total work done by the drag 
force 𝐅 on the drone as it moves along the closed path 𝐶. The result of 50 J (joules) 
indicates that the drag force has done 50 joules of work on the drone during its motion 
along this path. Since the path is closed, this work represents energy lost due to drag 
forces acting against the drone’s motion.
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