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MATH 2551-G Exam 3
Fall 2025

EXAM KEY

Read all instructions carefully before beginning.

Print your name and GT ID neatly above.
You have 75 minutes to complete as many problems as you wish to attempt.

You may not use electronic devices of any kind during the exam. You may not use any
reference materials other than your single page of hand-written notes you brought to the
exam.

The Learning Targets covered by this exam are listed below.
Show your work. Answers without work shown will receive a Not Yet

Good luck! Write yourself a message of encouragement on the front page!

Learning Targets

G1: Lines and Planes. I can describe lines using the vector equation of a line. I can describe
planes using the general equation of a plane. I can find the equations of planes using a point and
a normal vector. I can find the intersections of lines and planes. I can describe the relationships
of lines and planes to each other. I can solve problems with lines and planes.

G2: Calculus of Curves. I can compute tangent vectors to parametric curves and their
velocity, speed, and acceleration. I can find equations of tangent lines to parametric curves. |
can solve initial value problems for motion on parametric curves.

G3: Geometry of Curves. I can compute the arc length of a curve in two or three dimensions
and apply arc length to solve problems. I can compute normal vectors and curvature for curves
in two and three dimensions. I can interpret these objects geometrically and in applications.

G4: Surfaces. I can identify standard quadric surfaces including: spheres, ellipsoids, elliptic
paraboloids, hyperboloids, cones, and hyperbolic paraboloids. I can match graphs of functions
of two variables to their equations and contour plots and determine their domains and ranges.

G5: Parameterization. I can find parametric equations for common curves, such as line
segments, graphs of functions of one variable, circles, and ellipses. I can match given parametric
equations to Cartesian equations and graphs. I can parameterize common surfaces, such as
planes, quadric surfaces, and functions of two variables.

D1: Computing Derivatives. I can compute partial derivatives, total derivatives, directional
derivatives, and gradients. I can use the Chain Rule for multivariable functions to compute
derivatives of composite functions.

D2: Tangent Planes and Linear Approximations. I can find equations for tangent planes
to surfaces and linear approximations of functions at a given point and apply these to solve
problems.



     𝑝  1  


   5  𝑥  +  3  𝑦  −  2  𝑧  =   91  


   𝑄 


   (  2  ,  1  ,  −  1  ) 


     𝑝  2  


   5  (  𝑥  −  2  )  +  3  (  𝑦  −  1  )  −  2  (  𝑧  +  1  )  =  0     or     5  𝑥  +  3  𝑦  −  2  𝑧  =   15   . 


   ℓ 


   ℓ  (  𝑡  )  =  ⟨  5  ,  3  ,  −  2  ⟩  𝑡  +  ⟨  2  ,  1  ,  −  1  ⟩  . 


   𝑅 


           5  (  5  𝑡  +  2  )  +  3  (  3  𝑡  +  1  )  −  2  (  −  2  𝑡  −  1  )     =   91            25   𝑡  +   10   +  9  𝑡  +  3  +  4  𝑡  +  2     =   91            38   𝑡     =   76           𝑡     =  2    


   ℓ  (  2  )  =  ⟨   12   ,  7  ,  −  5  ⟩ 


   |      𝑄  𝑅   →   |  =      (   12   −  2    )  2   +  (  7  −  1    )  2   +  (  −  5  −  (  −  1  )    )  2     =       100   +   36   +   16     =     152    . 


   𝐫  (  𝑡  ) 


   𝐶 


   𝐫  (  0  )  =  ⟨  1  ,  2  ,  3  ⟩ 


     𝐫  ′   (  𝑡  ) 


   (  1  ,  2  ,  3  ) 


     𝐫  ″   (  𝑡  )  =   sin   (  𝑡  )  𝐢  −  2  𝐣  +   16     𝑒    4  𝑡    𝐤  ,    −  ∞  <  𝑡  <  ∞  ,    𝐫  (  0  )  =  ⟨  0  ,  0  ,  0  ⟩  ,    𝐫  ′   (  0  )  =  ⟨  0  ,  0  ,  0  ⟩ 


   𝐫  (  𝑡  )  =  −   sin   (  𝑡  )  𝐢  −    𝑡  2   𝐣  +    𝑒    4  𝑡    𝐤 


   ◯ 


   ✓ 


   1 


   𝑥  =  𝑔  (  𝑦  ) 


   𝑥  𝑦 


   |    𝑔  ″   (  𝑦  )  | 


         |    𝑔  ″   (  𝑦  )  |     (  1  +  (    𝑔  ′   (  𝑦  )    )  2     )    3  /  2      


       1  +  (    𝑔  ′   (  𝑦  )    )  2    


         |    𝑔  ″   (  𝑦  )  |       1  +  (    𝑔  ′   (  𝑦  )    )  2      


   𝑃 


   𝐫  (  𝑡  )  =  𝑃  +  ⟨  7  ,  1  ,  −  3  ⟩  𝑡  ? 


       1     50      ⟨  1  ,  −  7  ,  0  ⟩ 


       1     59      ⟨  3  ,  1  ,  7  ⟩ 


       1     59      ⟨  7  ,  1  ,  −  3  ⟩ 


   ⟨  0  ,  3  ,  1  ⟩ 


   𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2   +    𝑦  2   +      𝑥  −  2  +    𝑦  2    


   𝑓  (  𝑥  ,  𝑦  )  =   arccos   (    𝑥  2   +    𝑦  2   ) 


     𝑧  2   =    𝑥  2   +    𝑦  2   +  4 


   𝐫  (  𝑢  ,  𝑣  ) 


   𝑥  =  4    𝑦  2   +    𝑧  2  


   0  ≤  𝑥  ≤  4 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  𝑢  ,  𝑣  ,  4    𝑢  2   +    𝑣  2   ⟩  ,  0  ≤  4    𝑢  2   +    𝑣  2   ≤  4 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  𝑢     cos   (  𝑣  )  ,  𝑢     sin   (  𝑣  )  ,  4    𝑢  2        cos   2   (  𝑣  )  +    𝑢  2        sin   2   (  𝑣  )  ⟩  ,  0  ≤  𝑢  ≤  4  ,  0  ≤  𝑣  ≤  2  𝜋 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  𝑢  ,        𝑢   2       cos   (  𝑣  )  ,    𝑢      sin   (  𝑣  )  ⟩  ,  0  ≤  𝑢  ≤  4  ,  0  ≤  𝑣  ≤  2  𝜋 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  4    𝑣  2   ,  𝑣     cos   (  𝑢  )  ,  2  𝑣     sin   (  𝑢  )  ⟩  ,  0  ≤  𝑢  ≤  2  𝜋  ,  0  ≤  𝑣  ≤  1 


   𝐫  (  𝑢  ,  𝑣  )  =  ⟨  4    𝑢  2   +    𝑣  2   ,  𝑢  ,  𝑣  ⟩  ,  0  ≤  4    𝑢  2   +    𝑣  2   ≤  4 


   𝑥 


   𝑦  𝑧 


   4  =  4    𝑦  2   +    𝑧  2  


   𝑥  =  4 


   𝐫  (  𝑡  )  =  ⟨  4  ,   sin   (  𝑡  )  ,  2     cos   (  𝑡  )  ⟩  ,  0  ≤  𝑡  ≤  2  𝜋  . 


   𝑔  ∶    ℝ  3   →  ℝ 


   𝑔  (  𝑥  ,  𝑦  ,  𝑧  )  =    𝑥  4   +    𝑦  3   +    𝑧  2  


   𝑃  =  (  2  ,  −  4  ,  4  ) 


   𝑔 


   𝑦 


   𝑧 


   𝐷  𝑔  (  𝑥  ,  𝑦  ,  𝑧  )  =    [              4    𝑥  3      3    𝑦  2      2  𝑧          ]   ,    so    𝐷  𝑔  (  𝑃  )  =    [               32       48      8          ]   . 


   𝐢  ,  𝐣  ,  𝐤 


   𝐮  =      𝑂  𝑃   →   /  |      𝑂  𝑃   →   |  =    1  6   ⟨  −  2  ,  4  ,  −  4  ⟩ 


             𝐷  𝐢   𝑔  (  𝑃  )     =  𝐷  𝑔  (  𝑃  )  𝐢  =   32             𝐷  𝐣   𝑔  (  𝑃  )     =  𝐷  𝑔  (  𝑃  )  𝐣  =   48             𝐷  𝐤   𝑔  (  𝑃  )     =  𝐷  𝑔  (  𝑃  )  𝐤  =  8            𝐷  𝐮   𝑔  (  𝑃  )     =  𝐷  𝑔  (  𝑃  )  𝐮  =    1  6   (  2  (   32   )  −  4  (   48   )  +  (  4  )  (  8  )  )  =  −   16     


    48  


   𝑓  (  𝑥  ,  𝑦  ,  𝑧  )  =  𝑦  𝑧  +    𝑥  2     𝑒    𝑧  −  𝑦   


   𝑓  =  7 


   𝑃  =  (    𝑒   ,  3  ,  2  ) 


   𝑃  =  (    𝑥  0   ,    𝑦  0   ,    𝑧  0   ) 


   ∇  𝑓  (  𝑃  )  ⋅  ⟨  𝑥  −    𝑥  0   ,  𝑦  −    𝑦  0   ,  𝑧  −    𝑧  0   ⟩  =  0 


   ∇  𝑓  =  ⟨  2  𝑥    𝑒    𝑧  −  𝑦    ,  𝑧  −    𝑥  2     𝑒    𝑧  −  𝑦    ,  𝑦  +    𝑥  2     𝑒    𝑧  −  𝑦    ⟩  , 


   ∇  𝑓  (  𝑃  )  =  ⟨  2  /    𝑒   ,  1  ,  4  ⟩ 


     2    𝑒    (  𝑥  −    𝑒   )  +  (  𝑦  −  3  )  +  4  (  𝑧  −  2  )  =  0 


     2    𝑒    𝑥  +  𝑦  +  4  𝑧  =   13  


   𝐿  (  𝑥  ,  𝑦  ,  𝑧  ) 


   𝑓 


   𝐿  (  𝑥  ,  𝑦  ,  𝑧  )  =  𝑓  (  𝑃  )  +  ∇  𝑓  (  𝑃  )  ⋅  ⟨  𝑥  −    𝑥  0   ,  𝑦  −    𝑦  0   ,  𝑧  −    𝑧  0   ⟩  . 


   𝑓  (  𝑃  )  =  7 


   𝐿  (  𝑥  ,  𝑦  ,  𝑧  )  =  7  +    2    𝑒    (  𝑥  −    𝑒   )  +  (  𝑦  −  3  )  +  4  (  𝑧  −  2  )  . 


   𝑓  (    𝑒   ,  3  .  1  ,  2  .  1  ) 


   𝑓  (    𝑒   ,  3  .  1  ,  2  .  1  )  )  ≈  𝐿  (    𝑒   ,  3  .  1  ,  2  .  1  )  )  =  7  +    2    𝑒    (  0  )  +  (  .  1  )  +  4  (  .  1  )  =  7  .  5 


   𝑓  (  𝑥  ,  𝑦  )  =  𝑥  𝑦 


     𝑥  3   +    𝑦  3   =  2 


   𝑔  (  𝑥  ,  𝑦  )  =    𝑥  3   +    𝑦  3   =  2 


   ∇  𝑓  =  ⟨  𝑦  ,  𝑥  ⟩ 


   ∇  𝑔  =  ⟨  3    𝑥  2   ,  3    𝑦  2   ⟩ 


   ∇  𝑓  =  𝜆  ∇  𝑔 


   {            𝑦  =  3    𝑥  2   𝜆             𝑥  =  3    𝑦  2   𝜆               𝑥  3   +    𝑦  3   =  2  .              


   𝜆 


   𝑥  =  0 


   𝜆  =      𝑦    3    𝑥  2     


   𝑦  =  0 


     0  3   +    0  3   ≠  2 


   𝑥  =  3    𝑦  2     𝑦    3    𝑥  2     . 


     𝑥  2  


     𝑥  3   =    𝑦  3  


   𝑥  =  𝑦 


   2    𝑥  3   =  2 


     𝑥  3   =  1 


   𝑥  =  1 


   𝑦  =  1 


   𝑓  (  𝑥  ,  𝑦  ) 


   𝑓  (  1  ,  1  )  =  1 


   𝑥  →  −  ∞ 


   𝑦  →  ∞ 


   𝑓  =  𝑥  𝑦  →  −  ∞ 


   𝑧  =  𝑥  ,    𝑥  +  𝑧  =  5  ,    𝑧  =  𝑦  ,    𝑦  =   10   ,     and     𝑧  =  0  . 


     ∫  0    5  /  2      ∫  𝑧    5  −  𝑧      ∫  𝑧   10      𝑑  𝑦    𝑑  𝑥    𝑑  𝑧 


     ∫  0    5  /  2      ∫  0  𝑥     ∫  𝑧   10      𝑑  𝑦    𝑑  𝑧    𝑑  𝑥  +    ∫    5  /  2   5     ∫  0    5  −  𝑥      ∫  𝑧   10      𝑑  𝑦    𝑑  𝑧    𝑑  𝑥 


     ∫  0    5  /  2      ∫  𝑧   10      ∫  𝑧    5  −  𝑧      𝑑  𝑥    𝑑  𝑦    𝑑  𝑧 


     ∫  0    5  /  2      ∫  0  𝑦     ∫  𝑧    5  −  𝑧      𝑑  𝑥    𝑑  𝑧    𝑑  𝑦  +    ∫    5  /  2    10      ∫  0    5  /  2      ∫  𝑧    5  −  𝑧      𝑑  𝑥    𝑑  𝑧    𝑑  𝑦 


     ∫  0    5  /  2      ∫  𝑦    5  −  𝑦      ∫  0  𝑦     𝑑  𝑧    𝑑  𝑥    𝑑  𝑦  +    ∫  0    5  /  2      ∫  𝑥   10      ∫  0  𝑦     𝑑  𝑧    𝑑  𝑥    𝑑  𝑦  +    ∫    5  /  2   5     ∫    5  −  𝑥    10      ∫  0    5  −  𝑥      𝑑  𝑧    𝑑  𝑥    𝑑  𝑦 


     ∫  0  3     ∫  0  1     ∫  0    𝑦    2  𝑥  𝑦  𝑧    𝑒    𝑥  2      𝑑  𝑥    𝑑  𝑦    𝑑  𝑧  . 


   (  𝑥  ,  𝑦  )  =  𝑇  (  𝑢  ,  𝑣  ) 


     ∬  𝑅   (  9    𝑥  2   +   24   𝑥  𝑦  +   16     𝑦  2   )  (  𝑥  −  5  𝑦  )    𝑑  𝑥    𝑑  𝑦 


   𝑢 


   𝑣 


   3  𝑥  +  4  𝑦  =   17   ,    3  𝑥  +  4  𝑦  =   77   ,    𝑥  −  5  𝑦  =   227   ,    𝑥  −  5  𝑦  =   314   . 


   𝑢  =  3  𝑥  +  4  𝑦 


   𝑣  =  𝑥  −  5  𝑦 


   𝑢  =  𝑥  −  5  𝑦 


   𝑣  =  3  𝑥  +  4  𝑦 


   𝐺 


   𝑢  𝑣 


    227   ≤  𝑢  ≤   314  


    17   ≤  𝑣  ≤   77  


   (  9    𝑥  2   +   24   𝑥  𝑦  +   16     𝑦  2   )  (  𝑥  −  5  𝑦  )  =  (  3  𝑥  +  4  𝑦    )  2   (  𝑥  −  5  𝑦  )  =  𝑢    𝑣  2   . 


   |   det   (  𝐷  𝑇  (  𝑢  ,  𝑣  )  )  |  =    1    |   det   (  𝐷    𝑇    −  1    (  𝑥  ,  𝑦  )  )  |    =    1    |   det       [              1     −  5        3     4          ]   |    =    1    |  4  +   15   |    =    1   19    . 


     ∫   17    77      ∫   227    314        𝑢    𝑣  2     19      𝑑  𝑢    𝑑  𝑣 


     ∫   227    314      ∫   17    77          𝑢  2   𝑣    19      𝑑  𝑢    𝑑  𝑣  . 


   (  1  ,  1  ) 


   (  4  ,  2  ) 


     ∫  𝐶   𝑥  −  𝑦    𝑑  𝑠 


   𝐫  (  𝑡  )  =  ⟨  1  ,  1  ⟩  +  ⟨  3  ,  1  ⟩  𝑡  ,    0  ≤  𝑡  ≤  1  . 


   ‖    𝐫  ′   (  𝑡  )  ‖  =      (  3    )  2   +    1  2     =     10    . 


             ∫  𝐶   𝑥  −  𝑦    𝑑  𝑠     =    ∫  0  1   (  3  𝑡  +  1  −  (  𝑡  +  1  )  )     10      𝑑  𝑡            =     10      ∫  0  1   2  𝑡    𝑑  𝑡            =     10              𝑡  2   |   0  1             =     10      


     ∫  𝐶   (  𝑥  𝐢  −  𝑦  𝐣  )  ⋅  𝑑  𝐫 


   ∇  (    1  2     𝑥  2   −    1  2     𝑦  2   )  =  𝑥  𝐢  −  𝑦  𝐣 


             ∫  𝐶   (  𝑥  𝐢  −  𝑦  𝐣  )  ⋅  𝑑  𝐫     =    ∫  0  1   ⟨  3  𝑡  +  1  ,  −  𝑡  −  1  ⟩  ⋅  ⟨  3  ,  1  ⟩    𝑑  𝑡            =    ∫  0  1   3  (  3  𝑡  +  1  )  −  (  𝑡  +  1  )    𝑑  𝑡            =    ∫  0  1   8  𝑡  +  2    𝑑  𝑡            =        4    𝑡  2   +  2  𝑡  |   0  1             =  6             


     ∫  𝐶   (  𝑥  𝐢  −  𝑦  𝐣  )  ⋅  𝑑  𝐫  =          1  2   (    𝑥  2   −    𝑦  2   )  |     (  1  ,  1  )     (  4  ,  2  )    =    1  2   (   16   −  4  )  =  6 


   𝐅  (  𝑥  ,  𝑦  )  =  ⟨  2  𝑥     sin   (  𝑦  )  +  𝑦     cos   (  𝑥  )  ,    𝑥  2      cos   (  𝑦  )  +   sin   (  𝑥  )  ⟩    𝐆  (  𝑥  ,  𝑦  )  =  ⟨    𝑥  2      sin   (  𝑦  )  ,  𝑦     cos   (  𝑥  )  ⟩  . 


   (  𝜋  ,  𝜋  /  2  ) 


   (  𝜋  /  2  ,  𝜋  ) 


     ℝ  2  


    curl     𝐅  =  ⟨  0  ,  0  ,  2  𝑥     cos   (  𝑦  )  +   cos   (  𝑥  )  −  (  2  𝑥     cos   (  𝑦  )  +   cos   (  𝑥  )  )  ⟩  =  ⟨  0  ,  0  ,  0  ⟩  , 


   𝐅 


    curl     𝐆  =  ⟨  0  ,  0  ,  −  𝑦     sin   (  𝑥  )  −    𝑥  2      cos   (  𝑦  )  ⟩  , 


   𝐆 


     𝑓  𝑥   =  2  𝑥     sin   (  𝑦  )  +  𝑦     cos   (  𝑥  )     and       𝑓  𝑦   =    𝑥  2      cos   (  𝑦  )  +   sin   (  𝑥  )  . 


   𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2      sin   (  𝑦  )  +  𝑦     sin   (  𝑥  )  +  ℎ  (  𝑦  )  , 


   ℎ  (  𝑦  ) 


     𝑓  𝑦   =    𝑥  2      cos   (  𝑦  )  +   sin   (  𝑥  )  +    ℎ  ′   (  𝑦  )  . 


     ℎ  ′   (  𝑦  )  =  0  , 


   𝑓  (  𝑥  ,  𝑦  )  =    𝑥  2      sin   (  𝑦  )  +  𝑦     sin   (  𝑥  )  . 


             ∫  𝐶   𝐅  ⋅  𝑑  𝐫     =  𝑓  (  𝜋  /  2  ,  𝜋  )  −  𝑓  (  𝜋  ,  𝜋  /  2  )            =    (  0  +  𝜋  )   −    (    𝜋  2   +  0  )             =  𝜋  −    𝜋  2   .    


   𝐅  (  𝑥  ,  𝑦  ,  𝑧  )  =  ⟨  𝑧  ,  𝑥  ,  𝑦  ⟩  , 


   𝑆 


   𝑥  +  𝑦  +  𝑧  =  1 


     𝑥  2   +    𝑦  2   =  1 


   ⟨  1  ,  1  ,  1  ⟩ 


   𝐫  (  𝑡  )  =  ⟨   cos   (  𝑡  )  ,   sin   (  𝑡  )  ,  1  −   cos   (  𝑡  )  −   sin   (  𝑡  )  ⟩  ,    0  ≤  𝑡  ≤  2  𝜋  . 


   𝐅  (  𝐫  (  𝑡  )  ) 


     𝐫  ′   (  𝑡  )  =  ⟨  −   sin   (  𝑡  )  ,   cos   (  𝑡  )  ,   sin   (  𝑡  )  −   cos   (  𝑡  )  ⟩    𝐅  (  𝐫  (  𝑡  )  )  =  ⟨  1  −   cos   (  𝑡  )  −   sin   (  𝑡  )  ,   cos   (  𝑡  )  ,   sin   (  𝑡  )  ⟩  . 


             ∬  𝑆   (  ∇  ×  𝐅  )  ⋅  𝐧    𝑑  𝜎     =    ∫  𝐶   𝐅  ⋅  𝑑  𝐫            =    ∫  0    2  𝜋    𝐅  (  𝐫  (  𝑡  )  )  ⋅    𝐫  ′   (  𝑡  )    𝑑  𝑡            =    ∫  0    2  𝜋    ⟨  1  −   cos   (  𝑡  )  −   sin   (  𝑡  )  ,   cos   (  𝑡  )  ,   sin   (  𝑡  )  ⟩  ⋅  ⟨  −   sin   (  𝑡  )  ,   cos   (  𝑡  )  ,   sin   (  𝑡  )  −   cos   (  𝑡  )  ⟩    𝑑  𝑡            =    ∫  0    2  𝜋    −   sin   (  𝑡  )  +   sin   (  𝑡  )   cos   (  𝑡  )  +     sin   2   (  𝑡  )  +     cos   2   (  𝑡  )  +     sin   2   (  𝑡  )  −   sin   (  𝑡  )   cos   (  𝑡  )    𝑑  𝑡            =    ∫  0    2  𝜋    1  −   sin   (  𝑡  )  +     sin   2   (  𝑡  )    𝑑  𝑡            =    ∫  0    2  𝜋      3  2   −   sin   (  𝑡  )  −    1  2      cos   (  2  𝑡  )    𝑑  𝑡            =    3  2   𝑡  +   cos   (  𝑡  )  −    1  4      sin   (  2  𝑡  )    |  0    2  𝜋              =  3  𝜋  .    


   𝐅  =  ⟨  𝑧  𝑥  ,  𝑧  ,  𝑧  𝑦  ⟩ 


   𝑧  =  1  −    𝑥  2   −    𝑦  2  


   𝑧  ≥  0 


     𝐫  3  


     𝐫  1  


     𝐫  2  


     𝑥  2   +    𝑦  2   ≤  1 


     𝐫  𝑟   ×    𝐫  𝜃  


     𝐫  𝑟   =  ⟨   cos   (  𝜃  )  ,   sin   (  𝜃  )  ,  −  2  𝑟  ⟩      𝐫  𝜃   =  ⟨  −  𝑟     sin   (  𝜃  )  ,  𝑟     cos   (  𝜃  )  ,  0  ⟩  . 


     𝐫  𝑟   ×    𝐫  𝜃   =  ⟨  2    𝑟  2      cos   (  𝜃  )  ,  2    𝑟  2      sin   (  𝜃  )  ,  𝑟  ⟩  . 


             ∬  𝑆   𝐅  ⋅  𝐧    𝑑  𝜎     =    ∬  𝑅   𝐅  (    𝐫  2   (  𝑟  ,  𝜃  )  )  ⋅  (    𝐫  𝑟   ×    𝐫  𝜃   )    𝑑  𝑟    𝑑  𝜃            =    ∫  0    2  𝜋      ∫  0  1   (  1  −    𝑟  2   )  ⟨  𝑟     cos   (  𝜃  )  ,  1  ,  𝑟     sin   (  𝜃  )  ⟩  ⋅  ⟨  2    𝑟  2      cos   (  𝜃  )  ,  2    𝑟  2      sin   (  𝜃  )  ,  𝑟  ⟩    𝑑  𝑟    𝑑  𝜃            =    ∫  0    2  𝜋      ∫  0  1   (  1  −    𝑟  2   )  (  2    𝑟  3        cos   2   (  𝜃  )  +  3    𝑟  2      sin   (  𝜃  )  )    𝑑  𝑟    𝑑  𝜃            =    ∫  0    2  𝜋      ∫  0  1   (  2    𝑟  3   −  2    𝑟  5   )     cos   2   (  𝜃  )  +  (  3    𝑟  2   −  3    𝑟  4   )   sin   (  𝜃  )    𝑑  𝑟    𝑑  𝜃            =    ∫  0    2  𝜋          (    1  2     𝑟  4   −    1  3     𝑟  6   )     cos   2   (  𝜃  )  +  (    𝑟  3   −    3  5     𝑟  5   )   sin   (  𝜃  )  |     𝑟  =  0     𝑟  =  1        𝑑  𝜃            =    ∫  0    2  𝜋      1  6        cos   2   (  𝜃  )  +    2  5      sin   (  𝜃  )    𝑑  𝜃            =    ∫  0    2  𝜋      1   12    (  1  +   cos   (  2  𝜃  )  )  +    2  5      sin   (  𝜃  )    𝑑  𝜃            =          1   12    𝜃  +    1   24       sin   (  2  𝜃  )  −    2  5      cos   (  𝜃  )  |   0    2  𝜋              =    𝜋  6   .    


   ℎ  (  𝑥  ,  𝑦  ) 


   ℎ 


   +  ,  −  ,  0 


   (  −  1  ,  0  ) 


     𝐷  𝐮   ℎ  (  −  2  ,  0  )  ≈  0  .   422  


   𝐮 


   ⟨  1  ,  1  ⟩ 


   (  −  2  ,  0  ) 


     ∬  𝑆   𝐅  ⋅  𝐧    𝑑  𝜎  =  −   200  


   𝛿  (  𝑥  ,  𝑦  )  =    𝑥  2   +  (  2  −  𝑦  )  +   100  


       2  


   𝑦  =  2 


   𝛿 


   2  ≤  𝑥  ≤  4 


   0  ≤  𝑦  ≤  1 


   𝐅  (  𝑥  ,  𝑦  )  . 


     ∮  𝐶   𝐅  ⋅  𝑑  𝐫  =   50     J  


     ∮  𝐶   𝐅  ⋅  𝑑  𝐫 
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¢ D3: Optimization. I can locate and classify critical points of functions of two variables. I can
find absolute maxima and minima on closed bounded sets. I can use the method of Lagrange
multipliers to maximize and minimize functions of two or three variables subject to constraints.
I can interpret the results of my calculations to solve problems.

e I1: Double & Triple Integrals. I can set up double and triple integrals as iterated integrals
over any region. I can sketch regions based on a given iterated integral.

o I2: Tterated Integrals. I can compute iterated integrals of two and three variable functions,
including applying Fubini’s Theorem to change the order of integration of an iterated integral.

e I3: Change of Variables. I can use polar, cylindrical, and spherical coordinates to transform
double and triple integrals and can sketch regions based on given polar, cylindrical, and spherical
iterated integrals. I can use general change of variables to transform double and triple integrals
for easier calculation. I can choose the most appropriate coordinate system to evaluate a specific
integral.

e V1: Line Integrals. I can set up and evaluate scalar and vector field line integrals in two and
three dimensions.

¢ V2: Conservative Vector Fields. I can test for conservative vector fields and find potential
functions. I can state and apply the Fundamental Theorem of Line Integrals.

¢ V3: Generalizations of the FTC. I can state and apply Green’s Theorem, Stokes’ Theorem
and the Divergence Theorem to solve problems in two and three dimensions. I can choose which
theorem is appropriate for different integrals. I can compute curl and divergence of vector fields.

e V4: Surface Integrals. I can set up and compute surface integrals for scalar and vector
valued functions.

e Al: Interpreting Derivatives. I can interpret the meaning of a partial derivative, a gradient,
or a directional derivative of a function at a given point in a specified direction, including in the
context of a graph or a contour plot.

e A2: Integral Applications. I can use multiple integrals to solve physical problems, such as
finding area, average value, volume, or the mass or center of mass of a lamina or solid. I can
interpret mass, center of mass, work, flow, circulation, flux, and surface area in terms of line
and/or surface integrals, as appropriate.
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Tasks

1. [G1: Lines and Planes] Let p; be the plane defined by the equation 5z + 3y — 2z = 91
and let @ be the point (2,1, —1).

(a) Find an equation for the plane p, which contains the point @) and is parallel to p;.

Solution. The normal vector to p, needs to be parallel to the normal vector of py,
so we can take the same vector. Since the plane must contain (), we use that as the
reference point:

5(x—2)+3(y—1)—2(z+1)=0 or bz+3y—2z=15.

(b) Find an equation for the line ¢ which passes through @ and is orthogonal to both
planes.

Solution. Since ¢ is orthogonal to both planes, its direction vector is parallel to the
normal of both planes, so we again take the same vector and use ) as our reference
point.

0t) = (5,3, —2)t + (2,1, —1).

(c¢) Find the point R where the line ¢ intersects the plane p;.

Solution. To find R, we plug the line equation into the plane equation.

B(5t+2) +3(3t + 1) —2(—2t — 1) = 91
25t + 10 + 9t + 3 4 4t + 2 = 91
38t = 76

t=2

So Ris £(2) = (12,7,—5).

(d) Compute the distance between the two planes using your work in parts (a)-(c) above.

Solution. The distance between the two planes is the length of any line segment
orthogonal to both planes. Thus the segment of £ between ) and R gives the distance:

IQR| = /(12—2)2 + (T—1)2 + (=5 — (—1))2 = V100 + 36 + 16 = V/152.
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2. [G2: Calculus of Curves| For parts (a)-(c), determine whether the statement is true
or false and write T or F in the box provided. For part (d), bubble in the multiple choice
option that corresponds to your answer.

(a) T/F: A smooth curve in the plane that never crosses itself has a single tangent line
at a given point.

T

(b) T/F: Let r(t) parameterize a curve C in space with r(0) = (1,2,3). Then r’(¢)
gives a direction vector for the tangent line to the curve at the point (1,2, 3).

F

(¢) T/F: The solution to the initial value problem
r’(t) = sin(t)i — 2j + 16e*'k, —oo <t < oo, r(0)=(0,0,0),r'(0)=(0,0,0)

is
r(t) = —sin(t)i — t2j + e*'k

(d) Which statement below about motion in space is not true?

(O A) A particle with no velocity at a given time may still be accelerating at that
time.

(O B) A particle moving with zero acceleration must be moving at constant speed.
(O C) The path of a particle moving along a smooth curve can intersect itself.

v' D) A particle moving at constant speed must have zero acceleration.
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3. [G3: Geometry of Curves] For this problem, bubble in the multiple choice option that
corresponds to your answer on each part.

(a) Which statement below about arc length is not true?
(O The length of a curve C'is always positive.
(O The length of a curve C' may be equal to the distance between its endpoints.
(O The length of a curve C' parameterized by arc length can be greater than 1.
(O Every smooth curve can be parameterized by arc length.

v" The length of a curve C' depends on the parameterization we use to compute it.

(b) Which of the following expressions is the curvature of a curve z = g¢(y) in the
xy-plane?

O A) 9" ()]

(¢) Which of the following vectors could be the principal unit normal to a curve at a
point P where the tangent line is

r(t) = P+ (7,1, —3)?

1
A) — (1. —
/ >\/%<1, 7.0
QB)L<317>
NGO
1
o) _
© >\/E<7717 3

O D)

—~
=
w
—_
~
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4. [G4: Surfaces| For this problem, bubble in the multiple choice option that corresponds
to your answer on each part.

(a) Which option below best describes the domain of the function f(x,y) = 22 + y? +
\/W?

The part of the xy-plane on one side of a vertical line

All of the zy-plane

A)
)
) All of the zy-plane except for a disk about the origin
) The part of the zy-plane on one side of a parabola

)

The part of the xy-plane on one side of a horizontal line

(b) The contours of the function f(z,y) = arccos(z? + y?) are best described as:
O A) lines
B) circles
C) sinusoidal curves
)

D) parabolas

(c) The quadric surface defined by the equation z? = z? + 32 + 4 is a:
Q A) ellipsoid
elliptic paraboloid
hyperbolic paraboloid

B)
O C)
(O D) hyperboloid of one sheet
v E) hyperboloid of two sheets
O F)

cone
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5. [G5: Parameterization]

(a) Fill in the circle next to all of the parameterizations r(u,v) below corresponding to
the surface which is the part of the elliptical paraboloid x = 4y?+ 22 with 0 < z < 4.
O A) r(u,v) = (u, v, 4u® + v?), 0 <4u?+v2 <4
O B) r(u,v) = (ucos(v), usin(v), 4u? cos?(v) + u?sin?(v)), 0 < u < 4,0 < v < 27
Vu

v C) r(u,v) = (u, - cos(v), vusin(v)), 0<u<4,0<v<2rm

v D) r(u,v) = (4v2,vcos(u), 2vsin(u)), 0<u<2m,0<wv<1
vV E) r(u,v) = (4u? + 02 u,v),0 < 4u? + 02 < 4

(b) Give a parameterization of the boundary of the surface in part (a) that is oriented
clockwise around the positive z-axis when viewed looking down the positive x-axis
toward the yz-plane. Be sure to give a domain.

Solution. The boundary of the surface is the ellipse 4 = 4y? + 22 in the plane x = 4.
A parameterization of this ellipse with clockwise orientation is

r(t) = (4,sin(t),2cos(t)),0 < t < 2.
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6. [D1: Computing Derivatives] In this problem, you will work with the function g :
R3? — R given by g(z,y,2) = 2* + 32 + 22 and the point P = (2,—4,4) in the domain
of g.

(a) Suppose that you are only able to travel away from P in one of the following direc-
tions. Which direction (assuming you move with unit speed) will yield the greatest
instantaneous decrease in g?

(O parallel to the z-axis, with z increasing
(O parallel to the y-axis, with y increasing
(O parallel to the z-axis, with z increasing
v’ directly away from the origin

(b) Justify your answer to part (a).

Solution. This problem is asking in which of the given directions is the directional
derivative of g most negative. So we compute.

Dyg(z,y,z) = [4z® 3y* 2z], so Dg(P)=[32 48 §].

We also need a unit vector in each direction; for (A)-(C) these are the standard unit
vectors i, j, k and for (D) it is the vector u = OP/|OP| = %(—2, 4,—4). We then have:

D;g(P) = Dg(P)i = 32
Djg(P) = Dg(P)j = 48
Dyg(P) = Dg(P)k =8
D,g(P) = Dy(P)u = £(2(32) — 4(48) + (4)(8)) = —16

Of these, 48 is the smallest value, so the direction (iv) yields the greatest instantaneous
decrease in g.
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7. [D2: Tangent Planes and Linear Approximations] Let f(x,vy,2) = yz + x2e* Y.

(a) Find an equation of the tangent plane to the level surface f = 7 at the point

P =(/e,3,2).

Solution. The equation of a tangent plane to a level surface of a function of three
variables at a point P = (zg, Yo, 20) 18 Vf(P) - (x — 29,y — Yo, 2 — 29) = 0.

Vf=2ze Y z—x%" Y, y+x2e*Y),

so Vf(P) = (2/e, 1,4).

Thus an equation of the tangent plane is

%(x—\/g)+(y—3)+4(z—2):0

or

2
—z+y+42=13
Ve

(b) Find the linearization L(x,y, z) of f at P.

Solution. The linearization L(x,y, z) at Pis
L(.ﬁU,y,Z) = f(P) —|—Vf(P) ’ <$—$O,y—y0,2’—20>.

f(P) =T and we computed the rest of this in part (a).
So the linearization is

L(z,y,z) :7+%(x—\/5)+(y—3)+4(2—2).

(c) Use the linearization you found to approximate the value of f(v/e,3.1,2.1).

Solution.

e

F(Ve,3.1,2.1)) &~ L(v/e,3.1,2.1)) = 7+ %(0) F(1)+4(1) =75
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8. [D3: Optimization] Determine the largest value of the function f(x,y) = xy such that
23 + 13 = 2. Explain why f does not achieve a minimum subject to this constraint.

Solution. We can answer this problem using the method of Lagrange multipliers.
Our objective function is f(z,y) = xy and our constraint is g(z,y) = 2% + y® = 2.
We have Vf = (y,z) and Vg = (322, 3y?). Equating Vf = AVg, we get the system
of equations

y = 322\
x = 3y°\
34y =2
The nicest variable to isolate is A. Doing so in the first equation yields two cases:
either x =0 or A = Y
3x?

Case 1: z = 0. From equation 1, we also have y = 0. But then equation 3 is false:
03 4+ 03 # 2. So this is impossible.

Case 2: A = 3_3/2 Substitution into equation 2 gives
x

T =3y —.
Y 322
Simplifying, and multiplying by 22 to clear the fractions gives 23 = 33 or x = y. So
equation 3 becomes 223 = 2, i.e. 23 =1,ie. x = 1. Then y = 1 also and this is the
only solution point.

The largest value of f(x,y) subject to this constraint is therefore f(1,1) = 1. f
cannot attain a minimum value subject to this constraint because as © — —oo along
the constraint, y — oo and so f = xy — —oo. Hence there is no minimum value.
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9. [I1: Double & Triple Integrals] Write an integral for the volume of the finite region
bounded by the planes

z=x, x+z2=05H, z=y, y=10, and z=0.

Solution. The Rules for Triple Integrals tell us that this region will be easiest to
describe using either x or y as the first variable of integration and z as the last
variable. Following the rules generates the following equivalent integrals:

5/2 p5—z 10
/ / / dy dx dz
0 z z
10

o 5/2 px 5 5—z 10
/ // dydzdsc+/ / / dy dz dx
0 0 Jz 5/2 J0 z
or
5/2 10 56—z
/ / / dr dy dz
0 z z
or
5/2 py pb—z 10 5/2 52
/ / / dxdzdy-l—/ / / dxr dz dy
0 0 Yz 5/2 J0 z
or

5/2 p5—y py 5/2 10 py 5 (10 5—w
/ / / dzdacdy+/ / / dzdxdy—i—/ / / dz dx dy
0 y 0 0 z 0 5/2 J5—z Jo
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10. [I2: Iterated Integrals| Credit for this learning target may be earned either by com-
pleting the problem below or by completing successfully the V4 problem.

3 1 VY ,
/ / / 2xyze™ dx dy dz.
o Jo Jo

Compute

Solution.

1 Vi
/ / / 2xyze” > dx dy dz—/ / 2yz / re® dx | dydz (Let u = 2?)
0 0
3 1 1 u=y
= 2yz (—e“)
[ ]2

u=0

\

<y€y_ey__ 2

:/ e—e———0+1+0> dz
A 2
= 2,2 z

3

0

O N = S
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11. [I3: Change of Variables] Make an appropriate linear change of variables (z,y) =
T (u,v) to rewrite

//(9x2 + 24xy + 16y?)(z — 5y) dx dy
R

as an integral in v and v where R is the parallelogram in the fourth quadrant bounded
by the lines

3r+4y =17, 3r+4y =77, x—5y=227, x—>by=314.

Do not evaluate the integral.

Solution. Either u = 3z + 4y and v = ¢ — by or u = = — by and v = 3z + 4y will
work here. The only change to the final integral will be to swap the names of the
variables of integration. We will use the second option.

From this and the given line equations, we see that the region R in the xy-plane
corresponds to the rectangular region G in the uv-plane given by 227 < u < 314 and
17 <o <77

The integrand is also nicely expressed in terms of v and v already, since we have

(922 + 24zy + 16y?)(z — by) = (3z + 4y)*(z — by) = uv?.

Finally, since the transformation is linear, we can easily find the Jacobian by com-
puting the inverse of the determinant of the matrix of coefficients of this inverse

transformation:
1 1 1 1
det(DT = — -
[ et (DT (w )l = STl T 1 5| A+ 15 19
det 3 4

Putting all of this together gives the final integral:

T 314,
/ / —_— du dv

or, with the other choice of variables,
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12. [V1: Line Integrals| Consider the curve C' which is the line segment from the point
(1,1) to the point (4,2). Use any method you like to answer the following questions.

(a) Compute [,z —y ds.

Solution. A parameterization of C is
r(t) =(1,1)+ 3, 1)t, 0<¢t<1.

Then
(B = /(3)2 + 12 = VIO,

So we have

1
/:c—deZ/ (3t +1—(t+1))V10 dt
c 0

1
zx/ﬁ/ ot dt
0

= V10 12|,
=10

(b) Compute [ (zi—yj) - dr.

Solution. We can either use the same parameterization as in (a) or notice that we have

V(%xz — %yz) = xi — yj and use the Fundamental Theorem of Line Integrals.

Via parameterization:
1
/(aﬁ—yj)-dr:/ (Bt+1,—t—1)-(3,1) dt
C 0

:/13(3t+1)—(t+1) dt
0

1
:/ 8t+2dt
0

— 442 1
= 4% + 2]
=6

Via the Fundamental Theorem of Line Integrals:

(4,2)

1 1
[ dr= 5 =) = 6-4) =
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13. [V2: Conservative Vector Fields] Let
F(z,y) = (20sin(y) + yeos(), 2% cos(y) +sin(z))  G(,y) = (2?sin(y), ycos(z)).

In this problem you will work with these vector fields and the line segement C' beginning
(m,7m/2) and ending at (7/2, 7).

(a) One of these two fields is conservative. Identify which one and find a potential func-
tion for that field. Clearly explain how you know the other field is not conservative.

Solution. Both fields are defined on all of R2, which is an open, simply connected domain.
Therefore we can use the curl test to determine whether each field is conservative. We have

curl F = (0,0, 2x cos(y) + cos(x) — (2z cos(y) + cos(x))) = (0,0, 0),
so F is conservative. On the other hand,
2

curl G = (0,0, —ysin(x) — x* cos(y)),

which is not the zero vector everywhere. Therefore G is not conservative.
Now we find a potential function for F. We need to find f(x,y) such that

fe =2xsin(y) +ycos(z) and f, = x*cos(y) + sin(z).
Integrating the first equation with respect to x gives
f(z,y) = 2?sin(y) + ysin(z) + h(y),
for some function h(y). Differentiating this with respect to y gives
fy = x% cos(y) + sin(z) + 1’ (y).

Setting this equal to the second equation above gives h'(y) = 0, so h(y) is a constant.
Therefore one potential function for F is

f(,y) = 22 sin(y) + ysin(a).

(b) Compute the work done by the conservative field along the curve C. Fully simplify
your answer.

Solution. The work done is

/F-dr:f(w/2,7r)—f(7r,7r/2)
C

= (0+m) — (7*+0)

:7T—7Tz.
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14. [V3: Generalizations of the FTC] Consider the vector field

F(z,y,2) = (z,2,y),

the surface S which the part of the plane z + y + 2z = 1 inside the cylinder 22 + y? = 1,
oriented with normal in the (1,1, 1) direction, and the curve C which is the boundary of
S. The curve and surface are pictured below.

(a) Give a parameterization of C' which is oriented compatibly with S.

Solution. Since S is oriented with normal away from
the origin, we need C' to be oriented counterclockwise
around the z-axis viewed from above the xy-plane for
a compatible orientation. Therefore one compatible pa-
rameterization of C'is

r(t) = (cos(t),sin(t),1 — cos(t) —sin(t)), 0<t < 2x.

(b) Apply Stokes’ Theorem with your parameterization from (a) to compute the flux of
the curl of F across S.

Solution. We will need r’(¢) and F(r(t)) to apply Stokes” Theorem here. These are
r'(t) = (—sin(t), cos(t), sin(t)—cos(t)) F(r(t)) = (1—cos(t)—sin(t), cos(t),sin(t)).

Now we can apply Stokes” Theorem:

//S(VXF)~nd0:/CF-dr

/O Fx(t)) - r'(t) dt

(1 — cos(t) —sin(t), cos(t),sin(t)) - (—sin(t), cos(t),sin(t) — cos(t)) dt

—sin(t) + sin(t) cos(t) 4 sin?(t) 4 cos?(t) + sin(t) — sin(t) cos(t) dt
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15. [V4: Surface Integrals] Compute the flux of the vector field F = (zx, z, zy) across the
surface S consisting of the portion of the paraboloid z = 1 — 22 —y? with z > 0, oriented
with normal vectors away from the origin. Use any method you like.

Solution. Please don’t use rj; it’s a pain. We can either use the definition of flux
integrals directly with r; or r, or use the Divergence Theorem with the closed surface
consisting of S and the disk 22 + y? < 1 in the zy-plane since the flux of the field on
this disk is zero.

Using a parameterization: The simplest of these parameterizations to use is ry, since
it will have a nice domain of integration (r; will eventually lead to polar coordinates
anyway). To use our pullback formula, we need r, X ry:

r, = (cos(0),sin(f), —2r) rg = (—rsin(f), rcos(0),0).

”

Then taking the cross product gives
r, X vy = (2r? cos(f), 2r?sin(0), r).

We now apply the pullback formula:

//SF ndo = //F<r2<n0>> (e x 1) dr d
/02 1

/0:

/02

I

/ 7l + 2 in(6) do
0 6 COS 5 S11

r2){rcos(9),1,rsin(0)) - (2r? cos(f), 2r? sin(),r) dr dd

(1—
1
(1 —r?)(2r3 cos?(0) + 3r?sin(6)) dr do

1

3

\CNCN

2r3 — 2r%) cos?(0) + (3r?* — 3rt) sin(0) dr do

3 r=1
rt— —r 6) cos?(0) + (13 — 37“5) sin(0) df

r=0

l\DlH

_ /0 112(1+cos(29)) ésin(ﬁ) a0

2

= —0 - 20 2 0
_E +ﬂsm( ) 3COS(>0
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16. [A1: Interpreting Derivatives| In this problem, you will analyze the derivatives of a
height function h(z,y) measured in inches. Here positive x is east and positive y is north,
both measured in feet.A contour plot for h is shown below.

y
(a) Do you move up, down, or stay A
level moving north from the 1s
point P? }
down
0.75 1.5 0Q 108
3
.P
35
(b) Determine the sign (+,—,0) of ) 25
the rate of change of h at @ to- o T
wards (—1,0). . . . L
2 1 1 :
+ 15
054
2.5
35
R
3 |
(¢) Draw a vector which points in s 154 075
the direction of greatest rate of
change of height at the point R.
254

(d) Explain the meaning of the fact that
D h(—2,0) ~ 0.422

if u is the unit vector in the (1, 1) direction.

Solution. At the point (—2,0), the rate of change of h in the direction u is approx-
imately 0.422. This means that if you move northeast from that point, you will be
moving uphill at a rate of about 0.422 inches per foot moved northeast.
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17. [A2:

(a)

(b)

Integral Applications]

Give a possible interpretation of the statement

//F-ndaz—QOO
S

where S is the surface of a net. Be specific about the physical meaning you choose.

Solution. Many possible solutions. For example, this could represent the net flow of
water (in cubic meters per second) through a fishing net submerged in a river, where
F represents the velocity field of the water. The negative sign could then indicate
that there is a net flow of water into the net.

Suppose that §(z,y) = 22 + (2 — y) + 100 is the density (in kg/m?) of a lamina
occupying the region R in the xy-plane bounded by the lines x =0, x =4, y = 0,
and y = 2.

Explain which quarter of the rectangle contains the center of mass of the lamina.
Justify your answer.

Solution. The density is largest when x is large and y is small, since ¢ increases
with 22 and decreases with y. Therefore, the center of mass will be pulled towards
the region where x is largest and y is smallest, which is the lower right quarter of the
rectangle (where 2 <z <4 and 0 <y <1).

A drone moves through the air (position measured in meters) and experiences a drag
force in Newtons given by F(z,y). We compute that

?{F-dr:E)OJ
C

where C'is a closed path taken by the drone. Explain the meaning of this calculation,
including units.

Solution. The line integral fCF - dr represents the total work done by the drag
force F on the drone as it moves along the closed path C. The result of 50 J (joules)
indicates that the drag force has done 50 joules of work on the drone during its motion
along this path. Since the path is closed, this work represents energy lost due to drag
forces acting against the drone’s motion.
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