
Accessible PDFs from LATEX

 Hunter Lehmann

January 9, 2026

Contents
1 Introduction 1

2 Basics 1

3 Implementation 2
3.1 Graphics . 2
3.2 Tables . 2
3.3 Lists . 3
3.4 Headings & Document Structure . 3
3.5 Mathematics . 4

3.5.1 MathML Intents . 4
3.5.2 Screen Readers and MathML in PDF . 4

4 Examples 4

5 Reference Links 5
5.1 References on Creating Tagged PDFs . 5
5.2 Ways to Check Accessibility . 5

1 Introduction
This document is intended to be a basic reference for creating accessible PDFs from LATEX . The accessibility of
PDFs, both those created by LATEX and others, has been an issue for many years. Recent updates to the PDF
standard have allowed for much better support for accessibility features, especially for mathematics. This is also
especially important given the new rule on web content accessibility that comes into effect in April 2026 (see here).
Most basic documents (e.g. course notes, worksheets, quizzes) can now be automatically tagged and made fully
screen-reader accessible with minimal effort. More complex documents (e.g. exams, slides) need more work but are
also doable. Examples of all kinds are included in this project.

2 Basics
To enable the tagging features, you need to add the following to your document preamble:

 \DocumentMetadata{
 lang = en-US,
 pdfstandard = {ua-2, a-4f},
 tagging=on,
 tagging-setup={math/setup={mathml-SE,mathml-AF}}
}

This requires a 2025 version of the TeXLive installation or an up-to-date MikTeX installation. On September 4,
2025, Overleaf’s LATEX kernel was updated to support this, removing the need to work locally for most projects.

1

https://www.ada.gov/resources/2024-03-08-web-rule/

Basic tagging works with either pdflatex or lualatex compilation, but to handle mathematics properly, you
need to use lualatex to compile and use the unicode-math package. The mathml-SE option creates MathML as
Structure Elements, which works well with Adobe Acrobat and NVDA or JAWS with the MathCat add-on. The
mathml-AF option creates MathML as Associated Files, which works well with Foxit Reader and NVDA or JAWS
with the MathCat add-on.

Once this preamble is added, most parts of standard documents will work as is. The two major exceptions are im­
ages and tables. Images need to have alt text added or be marked as artifacts using the new alt={...} option to the
\includegraphics command. Tables need to have their header rows marked using the \tagpdfsetup{\table/header-
rows={X}} command. The enumitem package is not compatible, but most of its features are now implemented by
default (e.g. the ability to start at a particular number, resume the count in a new list, use roman or alphabetical
or arabic number - see the documentation links in Section 5.

Currently the article documentclass is well supported, but exam is currently incompatible and beamer will not
be supported. To create quiz or exam documents, you will need to rebuild some of the structures from exam
yourself. To create slides, you will need to transition to the newly under development ltx-talk documentclass.
This shares some syntax with beamer, and has some basic documentation available. At present this class requires
the November 2025 release of LATEX to compile, so requires custom set up to be accessed in Overleaf. I strongly
recommend working with a local TEX installation for this. More information about currently supported document
classes and packages can be found in this table.

3 Implementation
In this section, I will outline how to use some common features of LATEX to create accessible documents, focusing
on places where either there are modifications from standard usage or it is important to make careful choices to
ensure accessibility.

3.1 Graphics
All images included in the document need to either have alt text added or be marked as artifacts/decorative images.
Each instance of an \includegraphics command or \begin{tikzpicture}...\end{tikzpicture} environment
needs to be handled. To add alt text to one of these images, include the alt={text} optional argument to the
command or environment. For example, if I include a graphic of a sine wave using the file sinewave.png, I might
write:

 \includegraphics[alt={A graph of the sine function from 0 to 2 pi}]{sinewave.png}

If the image is purely decorative and does not add any information to the document, you can mark it as an artifact
by using the artifact optional argument. For example, if I have a decorative border image called border.png, I
would write:

 \includegraphics[artifact]{border.png}

When providing alt text, consider the purpose of the image and not just its content. Two resources for writing
effective alt text are WebAIM’s Alt Text Techniques and Nielsen Norman Group’s Alt Text: What to Write.

3.2 Tables
For a table to be accessible, screen readers need to know which rows are header rows and which columns are header
columns. You can set the header rows by invoking the command \tagpdfsetup{table/header-rows={X,Y,Z}},
where X,Y,Z is a comma-separated list of the row numbers that are header rows, starting from 1. This applies to
all following tables until it is changed again. For example, if I have a table where the first two rows are header
rows, I would write:

 \tagpdfsetup{table/header-rows={1,2}}
 \begin{tabular}{...}
 ...
 \end{tabular}

2

https://ctan.math.washington.edu/tex-archive/macros/latex/contrib/ltx-talk/ltx-talk.pdf
https://latex3.github.io/tagging-project/tagging-status/
https://webaim.org/techniques/alttext/
https://www.nngroup.com/articles/write-alt-text/

To set a default for all tables in the document, place this command in the document preamble. To set header
columns, use the command \tagpdfsetup{table/header-columns={X,Y,Z}} in the same way. Giving negative
arguments will count rows/columns from the end of the table.

Sometimes tabular environments are used solely to control layout instead of presenting data. In that case, you
should mark the table as a ‘presentation table’ to prevent screen readers from interpreting it as a data table.
You can do this by adding the command \tagpdfsetup{table/tagging=presentation} immediately before the
tabular environment.

The tabularx package that extends the functionality of table environments is also compatible with the tagging fea­
tures and can be used in the same way as described above. Currently only tabular, tabularx,tabular*,longtable
are supported.

3.3 Lists
The standard list environments of itemize and enumerate are fully supported. The extensions provided by the
enumitem package are not compatible, but many of its features are now implemented by default using a key-value
interface. A few of those keys are shown below, but for a full list, see the documentation links in Section 5.

To start an enumerate list at a specific number, use the start=X key, where X is the desired starting number. For
example, to start a list at 5, you would write:

 \begin{enumerate}[start=5]
 \item First item, but numbered 5.
 \end{enumerate}

To resume numbering from a previous list, use the resume key. For example, the code below produces a list that
continues numbering from a previous list:

 \begin{enumerate}
 \item First item
 \end{enumerate}
 More stuff here.
 \begin{enumerate}[resume]
 \item Second item
 \end{enumerate}

You can change the numbering style using the item-label=... key. Possible counter types include \arabic (the
default), \roman, \Roman, \alph, and \Alph. For example, to create a list with lowercase roman numerals in
parentheses as the labels, you would write:

 \begin{enumerate}[item-label=(\roman*)]
 \item First item
 \item Second item
 \end{enumerate}

3.4 Headings & Document Structure
To produce accessible documents, it is important to use the proper heading commands to create a logical document
structure. Every document should include \title{...} in its preamble, even if you don’t intend to call \maketitle
in the document body. This ensures that the document has a title tag in the PDF structure.

If you do intend to use \maketitle, do not patch the command to adjust its appearance; this will break the tagging
structure. Customization options for the appearance of titles and headers are being developed and are planned to
be released later in 2026.

Similarly, use the standard sectioning commands (\section{...}, \subsection{...}, \subsubsection{...},
etc.) to create headings in your document. Avoid using custom formatting (e.g., changing font size or style) to
create headings, as this will not be recognized by screen readers. If you choose to use unnumbered sections with
\section*{...}, be aware that these will not appear in the table of contents and the bookmarks in the output pdf

3

by default. You can manually add these to the structure by using the \addcontentsline command, as shown in
the example below.

 \section*{Course Introduction} \label{day1}
 \addcontentsline{toc}{section}{Course Introduction}

3.5 Mathematics
To ensure that mathematical content is accessible, you need to compile your document using lualatex and include
the unicode-math package in your preamble. There are two different methods of attaching the MathML repre­
sentation of your mathematics to the PDF structure, each of which works better with different pdf viewer/screen
reader combinations. The mathml-SE option creates MathML as Structure Elements, which works well with Adobe
Acrobat and NVDA or JAWS with the MathCat add-on. The mathml-AF option creates MathML as Associated
Files, which works well with Foxit Reader and NVDA or JAWS with the MathCat add-on. You can include both
options to cover both combinations, as shown in the preamble example in Section 2.

In general, you should avoid the practice of nesting math in text in math mode. So instead of writing

 \begin{cases}
 x +y = 10 & \text{if x > 0} \\
 x - y = 5 & \text{otherwise}
 \end{cases}

write

 \begin{cases}
 x +y = 10 & \text{if } x > 0 \\
 x - y = 5 & \text{otherwise}
 \end{cases}

3.5.1 MathML Intents

To provide additional context for screen readers, you can use MathML intents to specify the reading of certain math­
ematical expressions. This is especially useful for symbols that have different meanings in different contexts.

TODO: Add examples and explanation.

3.5.2 Screen Readers and MathML in PDF

At present, there is a chicken-and-egg problem with MathML in tagged PDFs. For many years, no one has produced
properly tagged PDFs with mathematics content, so most pdf viewers and many screen readers have not implemented
support for properly set up documents. This is slowly changing, but at present, the best combination for reading
mathematics in PDFs produced by LATEX is to use Adobe Acrobat Reader or Foxit Reader to view the PDF and
then use NVDA or JAWS with the MathCat library add-on to read the document. Any of these combinations does
a good job of reading mathematics content when the document is properly tagged.

Unfortunately, many automated accessibility checkers do not yet handle the PDF 2.0 schema with MathML properly,
so they will report errors even when the document is correctly tagged. For example, Ally reports that all mathematics
is inaccessible even when it is properly tagged with MathML, because it only checks against the older PDF 1.7
standard which would require alt text to be given on each formula object. You can enable generation of alt-text in
the tagging-setup options, which will automatically include your LATEX source code as alt text for each formula and
pass these checkers, but this is not recommended because some pdf viewer/screen reader combinations will read the
alt text instead of the MathML! This happens for Foxit Reader + NVDA with MathCat, for example.

4 Examples
In this shared folder I have included several examples of accessible documents I have created with LATEX recently.
These include:

4

• a worksheet

• an exam with both multiple choice and free response questions and solutions

• a partial set of course notes

• a set of presentation slides (converted from beamer to the ltx-talk documentclass)

This reference document itself is also an example.

Many more examples are available in the Tagging Project Examples page.

TODO: Add better comments explaining the important parts of each example.

5 Reference Links
5.1 References on Creating Tagged PDFs
Much of the ongoing work and current documentation on the creation of tagged and accessible PDFs from LATEX can
be found at via the LATEX3 Tagging Project repository on GitHub: https://latex3.github.io/tagging-project/
More detailed documentation for many of the features described in this reference document can be found there.

In particular, basic guidelines on implementing the tagging code are located here. More advanced documentation
is here.

Two of the project leaders gave talks at the TUG 2025 conference on the current state of the project, with examples.
You can find the talk from Frank Mittelbach here and the talk from Ulrike Fischer here.

Bugs and issues can be reported on the project’s page: https://github.com/latex3/tagging-project/issues.
This is a project that is constantly under development, and the best way to bring attention to important failures
in accessibility is to report them there.

5.2 Ways to Check Accessibility
You can use either Adobe Acrobat or the Foxit PDF reader along with the NVDA screen reader using the MathCat
add-on (instructions to install) to check whether your documents can be read properly. Both also have accessibility
checkers in their pro versions, but free accessibility checkers are available online, e.g.

• VeraPDF

• ngPDF - derives HTML from tagged PDFs

• showtags - Evaluates the PDF-structure (produced by LATEX project)

5

https://github.com/latex3/tagging-project/discussions/72
https://latex3.github.io/tagging-project/
https://latex3.github.io/tagging-project/documentation/prototype-usage-instructions
https://latex3.github.io/tagging-project/documentation/documentation-pointers
https://youtu.be/Eu_qM53tInw?t=5851
https://youtu.be/Eu_qM53tInw?t=8576
https://github.com/latex3/tagging-project/issues
https://www.nvaccess.org/download/
https://download.nvaccess.org/documentation/en/userGuide.html#Addons
https://dev.verapdf-rest.duallab.com/
https://ngpdf.com/
https://texlive.net/showtags

	Introduction
	Basics
	Implementation
	Graphics
	Tables
	Lists
	Headings & Document Structure
	Mathematics
	MathML Intents
	Screen Readers and MathML in PDF

	Examples
	Reference Links
	References on Creating Tagged PDFs
	Ways to Check Accessibility

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

